Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HU Jun-sheng, SU Bo, WU Shuai, YU Hang, GUO Jin-tong, ZHANG Tian-qi. MODIFICATION OF ACTIVATED CARBON PARTICLE ELECTRODE AND ITS ELECTROCATALYTIC PROPERTIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 136-141. doi: 10.13205/j.hjgc.202008023
Citation: CAO Xiuqin, LI Songyue, YANG Chao, HONG Guoyuan. RESEARCH ON INTERCEPTING CAPACITY OF DIFFERENT TYPES OF INTERCEPTING FACILITIES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 51-60. doi: 10.13205/j.hjgc.202408007

RESEARCH ON INTERCEPTING CAPACITY OF DIFFERENT TYPES OF INTERCEPTING FACILITIES

doi: 10.13205/j.hjgc.202408007
  • Received Date: 2023-03-13
    Available Online: 2024-12-02
  • The interception facility is a key structure in water pollution control. To investigate the fluid movement and the determination method of interception capacity in different interceptor facilities, pilot test, and computational fluid dynamics simulation were conducted. The results of fluid motion analysis showed that the narrowing effect of the overflow section made different water flow characteristics in the interceptor, which can be divided into wide top weir flow stage, gate hole free flow stage, gate hole flooded flow stage, and full tube with pressure flow stage. The water blocking and flow turning of the weir make the weir-type interceptor prone to siltation at the side away from the interceptor. The slot interceptor was influenced by the falling water of the slot, and the water flow fragmentation and a large amount of gas doping occurred, increasing the water loss; the slot and weir interceptor were mainly influenced by the slot, when the ratio of the weir to the slot was less than 1.2, and the influence of the weir dominated when the ratio was greater than 1.4. In this study, combined with hydrodynamics and mathematical analysis, the determination methods of interception capacity of different types of interceptors are derived.
  • [1]
    BOTTURI A, OZBAYRAM E G, TONDERA K, et al. Combined sewer overflows: a critical review on best practice and innovative solutions to mitigate impacts on environment and human health[J]. Critical Reviews in Environmental Science and Technology, Taylor & Francis, 2021, 51(15): 1585-1618.
    [2]
    何俊超, 李明明, 刘睿, 等. 国内外合流制溢流污染管控体系研究[J]. 环境工程, 2021, 39(4): 42-49.
    [3]
    CEU. JRC. Water Quality in Europe: Effects of the Urban Wastewater Treatment Directive?: a Retrospective and Scenario Analysis of Dir. 91/271/EEC.[M]. LU: Publications Office, 2019.
    [4]
    XU Z, XIONG L, LI H, et al. Influences of rainfall variables and antecedent discharge on urban effluent concentrations and loads in wet weather[J]. Water Science and Technology, 2017, 75(7): 1584-1598.
    [5]
    CHEBBO G, GROMAIRE M C, AHYERRE M, et al. Production and transport of urban wet weather pollution in combined sewer systems: the "Marais" experimental urban catchment in Paris[J]. Urban Water, 2001, 3(1): 3-15.
    [6]
    BARONE L, PILOTTI M, VALERIO G, et al. Analysis of the residual nutrient load from a combined sewer system in a watershed of a deep Italian lake[J]. Journal of Hydrology, 2019, 571: 202-213.
    [7]
    王家卓, 胡应均, 张春洋, 等. 对我国合流制排水系统及其溢流污染控制的思考[J]. 环境保护, 2018, 46(17): 14-19.
    [8]
    CHEN S, QIN H, ZHENG Y, et al. Spatial variations of pollutants from sewer interception system overflow[J]. Journal of Environmental Management, 2019, 233: 748-756.
    [9]
    刘家宏, 王开博, 徐多, 等. 高密度老城区海绵城市径流控制研究[J]. 水利水电技术, 2019, 50(11): 9-17.
    [10]
    THORNDAHL S, SCHAARUP-JENSEN K, Rasmussen R M. On hydraulic and pollution effects of converting combined sewer catchments to separate sewer catchments[J].Urban Water Journal,2015,12(2):120-130.
    [11]
    MATÉ MARÍN A, RIVIōRE N, LIPEME KOUYI G. DSM-flux: a new technology for reliable combined sewer overflow discharge monitoring with low uncertainties[J]. Journal of Environmental Management, 2018, 215: 273-282.
    [12]
    FACH S, SITZENFREI R, RAUCH W. Determining the spill flow discharge of combined sewer overflows using rating curves based on computational fluid dynamics instead of the standard weir equation[J]. Water Science and Technology, 2009, 60(12): 3035-3043.
    [13]
    黄瑞晶, 于磊, 葛俊, 等. 城市副中心合流制管网不同截流形式效果模拟研究[J]. 北京水务, 2021(5): 39-43.
    [14]
    刘威, 仲兆平, 刘瑾, 等. 基于CFD的袋式除尘器流场优化及漏袋模拟[J]. 环境工程, 2022, 40(11): 84-91

    ,142.
    [15]
    DUFRESNE M, VAZQUEZ J, TERFOUS A, et al. Three-dimensional flow measurements and CFD modelling in a storm-water tank[C]//International Conference on Sustainable Techniques & Strategies in Urban Water Management,.Lyon, 2007.
    [16]
    GRANATA F, MARINIS G D, GARGANO R, et al. Hydraulics of circular drop manholes[J].Journal of Irrigation & Drainage Engineering, 2011, 137(2): 102-111.
    [17]
    柴彤山, 伏雨, 程怀玉, 等. 基于CFD-PBM耦合方法的栅条絮凝池内颗粒聚并行为模拟[J]. 环境工程, 2023, 41(4): 40-48.
    [18]
    赵锐, 杜森, 李敏, 等. 基于CFD的渗滤液输运管道结垢特性的数值模拟[J]. 环境工程, 2023, 41(3): 111-118

    ,128.
    [19]
    王建龙, 秦美娜, 黄涛, 等. 基于CFD的雨水调蓄池颗粒物沉淀特性研究[J]. 环境工程, 2021, 39(12): 44-50.
    [20]
    曹秀芹, 江坤, 徐国庆, 等. 污水截流井的设计优化分析[J]. 给水排水, 2017, 53(12): 20-24.
    [21]
    JIANG L, DIAO M, SUN H, et al. Numerical modeling of flow over a rectangular broad-crested weir with a sloped upstream face[J]. Water, 2018, 10(11): 1663.
    [22]
    马一祎. 排水系统中跌水结构的气体卷吸和能量耗散问题研究[D]. 杭州:浙江大学, 2016.
    [23]
    李燕城, 冯倩云, 马君兰, 等. 城市合流管道污水截流性能研究[J]. 中国给水排水, 1987(5): 23-28,27

    -32,7.
    [24]
    马君兰, 董树信. 合流管道中雨水溢流井污水截流性能研究[J]. 北京建筑工程学院学报, 1990(2): 72-80.
  • Relative Articles

    [1]MA Yuhui, ZHANG Yizhong, GUO Jian, HUO Hanxin. PREPARATION OF ACTIVATED CARBON FROM HAWTHORN SEED VIA TWO-STEP PYROLYSIS-CO2 ACTIVATION METHOD FOR ADSORPTION OF LOMEFLOXACIN FROM AQUEOUS SOLUTION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 147-155. doi: 10.13205/j.hjgc.202403018
    [2]LIANG Wenjun, LU Dan, HU Wei. EVALUATION OF ADSORPTION PERFORMANCE USING COMMERCIAL ACTIVATED CARBON FOR TYPICAL GASOLINE-VAPOR VOCs AT SERVICE STATIONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 65-72. doi: 10.13205/j.hjgc.202410009
    [3]XU Jiarui, LIU Hao, LUAN Weihao, WANG Chao, LIU Changqing, YANG Yandong. ADSORPTION PERFORMANCE OF DISSOLVED ORGANIC MATTER BY IRON-MODIFIED ACTIVATED CARBON FROM SECONDARY EFFLUENT OF WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 67-72. doi: 10.13205/j.hjgc.202403008
    [4]FEI Bo, ZHANG Gangfeng, BU Mengya, LI Xiangdong. ADSORPTION AND DESORPTION PERFORMANCE OF HONEYCOMB ACTIVATED CARBON AND ZEOLITE MOLECULAR SIEVE FOR VOCs EXHAUST GAS FROM COATING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 90-96. doi: 10.13205/j.hjgc.202303012
    [5]PEI Jianlu, WANG Kunjun, CHEN Xin, LI Xiaochen, LI Yuan, TIAN Lintao, LI Yongguo. NEGATIVE SYNERGISTIC EFFECT OF AMINO IONIC LIQUID SUPPORTED ACTIVATED CARBON ON CO2 ADSORPTION PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 78-83. doi: 10.13205/j.hjgc.202211011
    [6]ZHAO Gang, TANG Jianguo, XU Jingcheng, LUO Jingyang, JIANG Ming, YUAN Xianchen, ZHOU Chuanting. COMPARATIVE ANALYSIS ON ENERGY AND CARBON EMISSION OF TYPICAL SLUDGE TREATMENT PROJECTS IN CHINA AND THE UNITED STATES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 9-16. doi: 10.13205/j.hjgc.202212002
    [7]ZHAN Ya-bin, WEI Yu-quan, LIN Yong-feng, ZHANG A-ke, TAO Xing-ling, REN Jian-guo, SHEN Wei-dong, LI Ji. EFFECTS OF AERATION MODES ON ENERGY CONSUMPTION, DEHYDRATION EFFICIENCY AND NITROGEN LOSS OF KITCHEN WASTE BIO-DRYING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 124-130. doi: 10.13205/j.hjgc.202105017
    [8]HE Jia-ni, LIU Yi-li, LI Zhu-lin, QIU Zhao-wen. ENERGY CONSUMPTION ANALYSIS OF MUNICIPAL SOLID WASTE CLASSIFIED TRANSPORTATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 136-142. doi: 10.13205/j.hjgc.202110019
    [12]Ma Liuke Zhan Furu, . STUDY ON ADSORPTION PROPERTIES OF ACTIVATED CARBON IRRADIATED BY ION BEAM[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(8): 105-109. doi: 10.13205/j.hjgc.201508024
    [14]Zhang Xiaoxu, Zhang Hongyu, Li Guoxue, . EFFECT OF ADDITIVE QUANTITY OF STALKS ON H2 S AND NH3 EMISSION DURING KITCHEN WASTE COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 95-99. doi: 10.13205/j.hjgc.201501022
    [15]Feng Zhuangzhuang, Liang Wenyan, Wang Haidong, Gao Kangle, Lu Bote, Zou Yuanlong, Tang Fengjun. INFLUENCE OF STACKING PATTERN OF 3D PARTICLE ELECTRODES ON ELECTRICITY CONSUMPTION IN ADVANCED TREATMENT OF COKING WASTEWATER APPLICATION OF NICOSULFURON-DEGRADING STRAIN SY-6[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 7-10. doi: 10.13205/j.hjgc.201502002
  • Cited by

    Periodical cited type(4)

    1. 张袤,李祥,王军,袁砚,黄勇. GAC颗粒电极的改性制备及处理老龄垃圾渗滤液. 中国环境科学. 2024(12): 6796-6806 .
    2. 杨洋,马迁,李增辉,袁旭冬,魏平方,戴捷. N-Mn-TiO_2/AC粒子电极的制备及其降解性能研究. 工业水处理. 2023(11): 114-119 .
    3. 于攀,余健,谢建军. 三维电极技术在废水处理中的研究与应用进展. 现代化工. 2022(06): 78-82 .
    4. 胡鑫鑫,杨帅,尤欣雨,刘雨,张文文,梁文艳. Ni/GO_(0.2)-PAC_(0.8)粒子电极的制备及其降解Cu-EDTA络合物效能. 环境工程学报. 2021(09): 2922-2932 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.6 %FULLTEXT: 11.6 %META: 87.6 %META: 87.6 %PDF: 0.8 %PDF: 0.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.6 %其他: 16.6 %其他: 1.2 %其他: 1.2 %China: 0.4 %China: 0.4 %上海: 2.9 %上海: 2.9 %东莞: 0.8 %东莞: 0.8 %临汾: 1.2 %临汾: 1.2 %保定: 1.7 %保定: 1.7 %兰州: 0.4 %兰州: 0.4 %北京: 2.5 %北京: 2.5 %南京: 0.4 %南京: 0.4 %厦门: 0.4 %厦门: 0.4 %台州: 0.4 %台州: 0.4 %合肥: 0.4 %合肥: 0.4 %嘉兴: 1.7 %嘉兴: 1.7 %天津: 2.1 %天津: 2.1 %安庆: 0.4 %安庆: 0.4 %宣城: 0.4 %宣城: 0.4 %常州: 0.4 %常州: 0.4 %常德: 0.4 %常德: 0.4 %张家口: 0.8 %张家口: 0.8 %徐州: 0.4 %徐州: 0.4 %成都: 0.8 %成都: 0.8 %拉贾斯坦邦: 0.4 %拉贾斯坦邦: 0.4 %昆明: 0.4 %昆明: 0.4 %晋城: 0.8 %晋城: 0.8 %朝阳: 0.4 %朝阳: 0.4 %杭州: 0.4 %杭州: 0.4 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.4 %沈阳: 0.4 %济源: 0.8 %济源: 0.8 %温州: 1.2 %温州: 1.2 %湖州: 0.8 %湖州: 0.8 %漯河: 2.5 %漯河: 2.5 %石家庄: 0.8 %石家庄: 0.8 %芒廷维尤: 38.6 %芒廷维尤: 38.6 %芝加哥: 1.2 %芝加哥: 1.2 %苏州: 1.7 %苏州: 1.7 %衢州: 0.4 %衢州: 0.4 %西宁: 4.6 %西宁: 4.6 %贵阳: 0.4 %贵阳: 0.4 %运城: 3.3 %运城: 3.3 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.4 %邯郸: 0.4 %郑州: 0.4 %郑州: 0.4 %重庆: 0.4 %重庆: 0.4 %镇江: 0.4 %镇江: 0.4 %长春: 0.4 %长春: 0.4 %长治: 0.4 %长治: 0.4 %青岛: 0.4 %青岛: 0.4 %其他其他China上海东莞临汾保定兰州北京南京厦门台州合肥嘉兴天津安庆宣城常州常德张家口徐州成都拉贾斯坦邦昆明晋城朝阳杭州武汉沈阳济源温州湖州漯河石家庄芒廷维尤芝加哥苏州衢州西宁贵阳运城遵义邯郸郑州重庆镇江长春长治青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (67) PDF downloads(1) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return