Citation: | XIE Qi, XIA Fei, YUAN Bo. PREDICTION OF PM2.5 CONCENTRATION IN XI’AN BASED ON CEEMDAN-SE-BiLSTM MODEL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 105-115. doi: 10.13205/j.hjgc.202408013 |
[1] |
WANG L F, SHI T, CHEN H Y. Air pollution and infant mortality: evidence from China[J]. Economics & Human Biology, 2023,49:101229.
|
[2] |
GUO Q F, XI X, YANG S T, et al. Technology strategies to achieve carbon peak and carbon neutrality for China’s metal mines[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(4):626-634.
|
[3] |
秦思达, 惠秀娟, 夏广锋, 等. 基于Model-3/CMAQ模式的本溪市大气细颗粒物数值模拟[J].环境科学研究, 2018, 31(1):53-60.
|
[4] |
秦思达, 王帆, 王堃, 等. 基于WRF-CMAQ模型的辽宁中部城市群PM2.5化学组分特征[J].环境科学研究, 2021,34(6):1277-1286.
|
[5] |
BHUVANESHWARI K S, UMA J, LOGESWARAN M N A, et al. Gaussian support vector machine algorithm based air pollution prediction[J]. CMC-Computers, Materials & Continua, 2022, 71(1):683-695.
|
[6] |
谢永华, 张鸣敏, 杨乐, 等. 基于支持向量机回归的城市PM2.5浓度预测[J]. 计算机工程与设计,2015, 36(11):3106-3111.
|
[7] |
杨思琪, 赵丽华. 随机森林算法在城市空气质量预测中的应用[J]. 统计与决策, 2017(20):83-86.
|
[8] |
任才溶,谢刚. 基于随机森林和气象参数的PM2.5浓度等级预测[J]. 计算机工程与应用,2019,55(2):213-220.
|
[9] |
彭斯俊, 沈加超, 朱雪. 基于ARIMA模型的PM2.5预测[J].安全与环境工程,2014,21(6):125-128.
|
[10] |
严宙宁, 牟敬锋, 赵星, 等. 基于ARIMA模型的深圳市大气PM2.5浓度时间序列预测分析[J]. 现代预防医学,2018,45(2):220-223.
|
[11] |
黄春桃, 范东平, 卢集富, 等. 基于深度学习模型的广州市大气PM2.5和PM10浓度预测[J]. 环境工程,2021,39(12):135-140.
|
[12] |
ZHOU X X, XU J J, ZENG P, et al. Air pollutant concentration prediction based on GRU method[J]. Journal of Physics: Conference Series, 2019, 1168(3):032058.
|
[13] |
孙宝磊, 孙暠, 张朝能, 等.基于BP神经网络的大气污染物浓度预测[J]. 环境科学学报, 2017, 37(5):1864-1871.
|
[14] |
艾洪福, 石莹. 基于BP人工神经网络的雾霾天气预测研究[J]. 计算机仿真, 2015, 32(1):402-405
,415.
|
[15] |
陈建坤, 牟凤云, 张用川, 等. 基于多机器学习模型的逐小时PM2.5浓度预测对比[J]. 南京林业大学学报(自然科学版), 2022, 46(5):152-160.
|
[16] |
LI X, PENG L,YAO X J, et al. Long short-term memory neural network for air pollutant concentration predictions: method development and evaluation[J].Environmental Pollution, 2017, 231(1):997-1004.
|
[17] |
KRISTIANI E, LIN H, LIN J R, et al. Short-term prediction of PM2.5 using LSTM deep learning methods[J]. Sustainability, 2022, 14(2068):2068.
|
[18] |
CHEN P, NIU A, JIANG W, et al. Air pollutant prediction: comparisons between LSTM, light GBM and random forests(Article)[J]. Journal of Environmental Protection and Ecology, 2019, 20(3):1059-1067.
|
[19] |
LIU B C, GUO X L, LAI M Z, et al. Air pollutant concentration forecasting using long short-term memory based on wavelet transform and information gain: a case study of Beijing[J]. Computational Intelligence and Neuroscience, 2020(1):8834699.
|
[20] |
YU L, WU C X, XIONG N N. An intelligent data analysis system combining ARIMA and LSTM for persistent organic pollutants concentration prediction[J]. Electronics, 2022, 11(4):652.
|
[21] |
叶如珊, 王海波. 基于CNN-BiLSTM模型的PM2.5浓度预测方法[J]. 数学的实践与认识, 2022, 52(7):181-188.
|
[22] |
MOHAN A S, ABRAHAM L. An ensemble deep learning model for forecasting hourly PM2.5 concentrations[J]. IETE Journal of Research, 2022:1-14.
|
[23] |
MIRZADEH S M, NEJADKOORKI F, MIRHOSEINI S A, et al. Developing a wavelet-AI hybrid model for short- and long-term predictions of the pollutant concentration of particulate matter10[J]. International Journal of Environmental Science and Technology, 2022, 19(1):209-222.
|
[24] |
HUANG Y, YU J H, DAI X H, et al. Air-quality prediction based on the EMD-IPSO-LSTM combination model[J]. Sustainability, 2022, 14(4889):4889.
|
[25] |
WANG X W, LIU W J, WANG Y N, et al. A hybrid NOx emission prediction model based on CEEMDAN and AM-LSTM[J]. Fuel, 2022, 310.
|
[26] |
WANG J Q,TANG J L,GUO K, et al. Green bond index prediction based on CEEMDAN-LSTM[J].Frontiers in Energy Research,2022,9.
|
[27] |
YANG Z Z,ZOU L,XIA J, et al. Inner dynamic detection and prediction of water quality based on CEEMDAN and GA-SVM models[J].Remote Sensing,2022,14(7):1714.
|
[28] |
PENG R, KUN D, XU L, et al. Short-term load forecasting based on CEEMDAN and transformer[J]. Electric Power Systems Research,2023,214:108885.
|
[29] |
LIU W F, JIANG Y, XU Y S. A super fast algorithm for estimating sample entropy[J]. Entropy, 2022, 24(4):524.
|
[30] |
杨俊闯, 赵超. K-Means聚类算法研究综述[J]. 计算机工程与应用, 2019, 55(23):7-14.
|
[31] |
SUN Y, LIU J W. AQI prediction based on CEEMDAN-ARMA-LSTM[J]. Sustainability, 2022,14(12182):12182.
|
[32] |
DUAN H M, LUO X L. A novel multivariable grey prediction model and its application in forecasting coal consumption[J]. ISA Transactions, 2022, 120:110-127.
|
[33] |
郑霞, 胡东滨,李权. 基于小波分解和SVM的大气污染物浓度预测模型研究[J]. 环境科学学报, 2020, 40(8):2962-2969.
|