Citation: | ZHU Yingjie, YANG Danhui, ZHOU Fanghe, FU Pengbo, YANG Qiang, LÜ Wenjie, LIU Bo, WANG Hualin. THE PRESENT AND FUTURE OF HYDROGEN PRODUCTION FROM WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 13-28. doi: 10.13205/j.hjgc.202409002 |
[1] |
RAIYAN A, MAAN H. Deep eutectic solvents: green multi-task agents for sustainable super green hydrogen technologies[J]. Journal of Energy Chemistry, 2023: 2095-4956.
|
[2] |
IEA. A Global Hydrogen Review 2023[R]. IEA, Paris,2023.
|
[3] |
IEA. Global Hydrogen Review 2022[R]. OECD Publishing, 2022.
|
[4] |
BLANK T K, MOLLY P. Hydrogen’s Decarbonization Impact for Industry. Near-term Challenges and Long-term Potential[R]. Rocky Mountain Institute, 2020.
|
[5] |
NISHIYAMA H, YAMADA T, NAKABAYASHI M, et al. Photocatalytic solar hydrogen production from water on a 100 m2 scale[J]. Nature, 2021, 598, 7880:304-307.
|
[6] |
XIE H, ZHAO Z, LIU T, et al. A membrane-based seawater electrolyser for hydrogen generation[J]. Nature, 2022, 612(7941): 673-678.
|
[7] |
CARTAXO M, FERNANDES. Hydrogen production via wastewater electrolysis:an integrated approach review, in modelling and implementation of complex systems[J]. Modelling and Implementation of Complex Systems, 2022: 671-680.
|
[8] |
李实.制氢技术的现状与发展趋势[J]. 一重技术,2024(2):72-74.
|
[9] |
LI Y, ZHOU H, CAI S, et al. Electrolyte-assisted polarization leading to enhanced charge separation and solar-to-hydrogen conversion efficiency of seawater splitting[J]. Nature Catalysis, 2024, 7(1): 77-88.
|
[10] |
IWA. Biological Wastewater Treatment[M]. IWA Publishing, 2008.
|
[11] |
KRISHNAMOORTHY S, PREMALATHA M, VIJAYASEKARAN M. Characterization of distillery wastewater-an approach to retrofit existing effluent treatment plant operation with phycoremediation[J]. Journal of Cleaner Production, 2017, 148: 735-750.
|
[12] |
JAIN M, MAJUMDER A, GHOSAL P S, et al. A review on treatment of petroleum refinery and petrochemical plant wastewater: a special emphasis on constructed wetlands[J]. Journal of Environmental Management, 2020, 272: 111057.
|
[13] |
MAITI D, ANSARI I, RATHER M A, et al. Comprehensive review on wastewater discharged from the coal-related industries-characteristics and treatment strategies[J]. Water Science and Technology, 2019, 79(11): 2023-2035.
|
[14] |
DAS P, MONDAL G C, SINGH S, et al. Effluent treatment technologies in the iron and steel industry-a state of the art review[J]. Water Environment Research, 2018, 90(5): 395-408.
|
[15] |
POKHREL D, VIRARAGHAVAN T. Treatment of pulp and paper mill wastewater: a review[J]. Science of the Total Environment, 2004, 333(1/2/3): 37-58.
|
[16] |
LOFRANO G, MERIÇ S, ZENGIN G E, et al. Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review[J]. Science of the Total Environment, 2013, 461: 265-281.
|
[17] |
GADIPELLY C, PÉREZ-GONZÁLEZ A, YADAV G D, et al. Pharmaceutical industry wastewater: review of the technologies for water treatment and reuse[J]. Industrial & Engineering Chemistry Research, 2014, 53(29): 11571-11592.
|
[18] |
KHANDEGAR V, SAROHA A K. Electrocoagulation for the treatment of textile industry effluent-a review[J]. Journal of Environmental Management, 2013, 128: 949-963.
|
[19] |
KARADAG D, KÖROǦLU O E, OZKAYA B, et al. A review on anaerobic biofilm reactors for the treatment of dairy industry wastewater[J]. Process Biochemistry, 2015, 50(2): 262-271.
|
[20] |
LI S, ZHAO S, YAN S, et al. Food processing wastewater purification by microalgae cultivation associated with high value-added compounds production: a review[J]. Chinese Journal of Chemical Engineering, 2019, 27(12): 2845-2856.
|
[21] |
SHARMILA V G, BANU J R, KIM S H, et al. A review on evaluation of applied pre-treatment methods of wastewater towards sustainable H2 generation energy efficiency analysis[J]. Hydrogen Energy,2020, 45(15): 8329-8345.
|
[22] |
ÇOKAY E, GÜRLER Y. Effects of metals in wastewater on hydrogen gas production using electrohydrolysis[J]. Hydrogen Energy,2020, 45: 3407-3413.
|
[23] |
郝晓地,闫颖颖,李季,等.污水处理出水电解制氢可行性分析[J]. 中国给水排水,2023,39(18):1-8.
|
[24] |
LIU Q P, FLORES-ALSINA X, RAMIN E, et al. Aking waves: power-to-X for the water resource recovery facilities of the future[J]. Water Research, 2024,257: 121691.
|
[25] |
IEA. Electrolysers[EB/OL]. https://www.iea.org/energy-system/low-emission-fuels/electrolysers.
|
[26] |
廖龙飞,李明雨,尹永利,等.碱性水电解制氢催化剂研究进展[J]. 工业催化,2023,31(2):7-17.
|
[27] |
TÜYSÜZ H. Alkaline water electrolysis for green hydrogen production[J]. Accounts Chem Res, 2024, 57(4):558-567.
|
[28] |
ANSAR A S, GAGO A S, RAZMJOOEI F, et al. Riedrich KA: alkaline electrolysis-status and prospects. InElectro chemical power sources: fundamentals[J]. Systems, and Applications, 2022:165-198.
|
[29] |
CHENG H R, XIA Y H, HU Z Y, et al. Optimum pulse electrolysis for efficiency enhancement of hydrogen production by alkaline water electrolyzers[J]. Applied Energy, 2024,358: 122510.
|
[30] |
ANWAR S, KHAN F, ZHANG Y, et al. Recent development in electrocatalysts for hydrogen production through water electrolysis[J]. Int J Hydrogen Energy, 2021,46(63):32284-32317.
|
[31] |
SCHNEIDER L P C, DHRIOUA M, ULLMER D, et al. Advancements in hydrogen production using alkaline electrolysis systems: a short review on experimental and simulation studies[J]. Current Opinion in Electrochemistry, 2024,47: 101552.
|
[32] |
WANG W, DING L, XIE Z, et al. Discovering reactant supply pathways at electrode PEM reaction interfaces via a tailored interface-visible characterization cell[J]. SMALL, 2023,19(28):2207809.
|
[33] |
ZHAO P, WANG J, HE W, et al. Magnetic field Pre-polarization enhances the efficiency of alkaline water electrolysis for hydrogen production[J]. Energy Convers Manag, 2023, 283:116906.
|
[34] |
WANG Y Q, WEN C, TU J, et al. he multi-scenario projection of cost reduction in hydrogen production by proton exchange membrane (PEM) water electrolysis in the near future (2020—2060) of China[J]. Fuel, 2023,354: 129409.
|
[35] |
CARMO M, KEELEY GP, HOLTZ D, et al. PEM water electrolysis: innovative approaches towards catalyst separation, recovery and recycling[J]. Int J Hydrogen Energy, 2019,44(7):3450-3455.
|
[36] |
LU S, ZHAO B, CHEN M, et al. Electrolysis of waste water containing aniline to produce polyaniline and hydrogen with low energy consumption[J]. Int J Hydrogen Energy, 2020,45(43):22419-22426.
|
[37] |
MORENO Soriano R, ROJAS N, NIETO E, et al. Influence of the gasket materials on the clamping pressure distribution in a PEM water electrolyzer: bolt torques and operation mode in pre-conditioning[J]. Int J Hydrogen Energy, 2021,46(51): 25944-25953.
|
[38] |
CHAI S, ZHANG G, LI G, et al. Industrial hydrogen production technology and development status in China: a review[J]. Clean Techn Environ Policy, 2021,23(7): 1931-1946.
|
[39] |
SALEHMIN MNI, HUSAINI T, GOH J, et al. High-pressure PEM water electrolyser: a review on challenges and mitigation strategies towards green and low-cost hydrogen production[J]. Energ Conver Manage, 2022,268: 15985.
|
[40] |
JANG D, KIM J, KIM D, et al. Techno-economic analysis and Monte Carlo simulation of green hydrogen production technology through various water electrolysis technologies[J]. Energ Conver Manage, 2022,258: 15499.
|
[41] |
OROSA P, CHINARRO L, GUINEA E, et al. Hydrogen production by wastewater alkaline electro-oxidation[J]. Energies, 2022, 15: 5888.
|
[42] |
ELGARAHY A M, ELOFFY M G, HAMMAD A, et al. Hydrogen production from wastewater, storage, economy, governance and applications: a review[J]. Environmental Chemistry Letters, 2022,20:3453-3504.
|
[43] |
MERABET N H, KERBOUA K, HOINKIS J. Hydrogen production from wastewater: a comprehensive review of conventional and solar powered technologies[J]. Renewable Energy, 2024,226: 120412.
|
[44] |
陈书鑫,周菁清,孙琴琴,等.全光谱条件下WO3-x光催化降解甲氧苄啶[J]. 环境工程,2023,41(2):140-145
,172.
|
[45] |
庞丹丹,李洁冰,宋忠贤,等.g-C3N4光催化剂的改性优化研究进展[J]. 环境工程,2019,37(4):104-111.
|
[46] |
ZHANG W L, LI Y, WANG C, et al. Energy recovery during advanced wastewater treatment: simultaneous estrogenic activity removal and hydrogen production through solar photocatalysis[J]. Water Research, 2013,47(3):1480-1490.
|
[47] |
YAGHOUBI S, MOJTABA S. MOUSAVI, et al. Photocatalysts for solar energy conversion: recent advances and environmental applications[J]. Renewable and Sustainable Energy Reviews, 2024,200: 114538.
|
[48] |
ZHAO Y, DING C, ZHU J, et al. A Hydrogen farm strategy for scalable solar hydrogen production with particulate photocatalysts[J]. Angew Chem Int Ed, 2020,59(24): 9653-9658.
|
[49] |
LI Z, LI R, JING H, et al. Blocking the reverse reactions of overall water splitting on a Rh/GaN-ZnO photocatalyst modified with Al2O3[J]. Nat Catal, 2023,6 (1):80-88.
|
[50] |
NISHIOKA S, OSTERLOH F E, WANG X, et al. Photocatalytic water splitting[J]. Nat Rev Methods Primers, 2023, 3(1):42.
|
[51] |
COSTANTINO F, KAMAT P V, Do sacrificial donors donate H2 in photocatalysis?[J]. CS Energy Lett, 2022,7(1):242-246.
|
[52] |
ZHANG X Y, CHENG Z J, BO C L, et al. The photocatalytic wastewater hydrogen production process with superior performance to the overall water splitting[J]. Colloid and Interface Science, 2025, 677: 189-197.
|
[53] |
WEI Z D, LIU J Y, SHANG W F. A review on photocatalysis in antibiotic wastewater: pollutant degradation and hydrogen production[J]. Catalysis, 2020,41(10): 1440-1450.
|
[54] |
PAVEL M, ANASTASESCU C, STATE R N, et al. Photocatalytic degradation of organic and inorganic pollutants to harmless end products: assessment of practical application potential for water and air cleaning[J]. Catalysts, 2023, 13(2):380.
|
[55] |
WANG S, WANG Y, HE X, et al. Degradation or humification: rethinking strategies to attenuate organic pollutants[J]. Trends Biotechnol, 2022,40 (9):1061-1072.
|
[56] |
REN Y, CHEN Y, LI Q, et al. Microwave-assisted photocatalytic degradation of organic pollutants via CNTs/TiO2[J]. Catalysts, 2022, 12 (9):940.
|
[57] |
CHEN D, CHENG Y, ZHOU N, et al. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: a review[J]. Clean Prod, 2020,268:121725.
|
[58] |
DURANTE C, MAZZUCATO M, BELLARDITA M, et al. Fundamentals of photoelectrocatalysis, Photo.: Fundam[J]. Appl, 2023: 7-81.
|
[59] |
BHUNIA P, DUTTA K. Photocatalysts and Photoelectrocatalysts in fuel cells and photofuel cells[J]. 2020: 19-55.
|
[60] |
HOSSEINZADEH N, HABIBZADEH S, HALLADJ R. A novel ternary Ti-V-Bi oxide photoelectrocatalyst in advanced oxidation process[J]. Alloy Compd, 2023, 960: 171064.
|
[61] |
何卓容,李贤英,魏贝贝.BiVO4/rGO涂膜电极光电催化测定水样中的COD[J]. 环境工程,2023,41(2):205-212.
|
[62] |
DAVIES K,ALLAN M G,NAGARAJAN S, et al. Solar light-driven simultaneous pharmaceutical pollutant degradation and green hydrogen production using a mesoporous nanoscale WO3/BiVO4 heterostructure photoanode[J]. Environ Chem Eng, 2023,11 (3):110256.
|
[63] |
KAUSHIK R, GANDHI S, HALDER A, Photoelectrochemical degradation of organic pollutants coupled with molecular hydrogen generation using Bi2O3/TiO2 nanoparticle arrays[J]. ACS Appl Nano Mater, 2023,6 (6):4297-4308.
|
[64] |
NYIKO M Chauke, MPFUNZENI Raphulu. A review: simultaneous "one-pot" pollution mitigation and hydrogen production from industrial wastewater using photoelectrocatalysis process[J]. Materials Today Catalysis, 2024,5: 100052.
|
[65] |
SURESH G, KUMARI P, VENKATA Mohan S. Light-dependent biohydrogen production: progress and perspectives[J]. Bioresour Technol, 2023, 380: 129007.
|
[66] |
M M M’ARIMI, A K KIPROP, et al. Progress in applications of advanced oxidation processes for promotion of biohydrogen production by fermentation processes[J]. Biomass Convers Biorefinery, 2022, 12:6033-6057.
|
[67] |
杜健,任宏宇,徐翩翩,等.有机废水发酵制氢末端废液资源化利用研究进展[J]. 给水排水,2022,58(增刊2):582-592.
|
[68] |
HITAM C N C, JALIL A A, A review on biohydrogen production through photo-fermentation of lignocellulosic biomass[J]. Biomass Convers Biorefinery, 2023,13(10):8465-8483.
|
[69] |
MICHAEL L ADEKANBI, BASHIR E SANI, STEVE O ESHIEMOGIE, et al. Biohydrogen production from wastewater: an overview of production techniques, challenges, and economic considerations, Energy[J]. Ecol Environ, 2022: 1-28.
|
[70] |
SAHA R, BHATTACHARYA D, MUKHOPADHYAY M. Enhanced production of biohydrogen from lignocellulosic feedstocks using microorganisms: a comprehensive review[J]. Energy Convers Manage, 2022,13: 100153.
|
[71] |
WANG Q, WEI D, LUO X, et al. Ultrahigh recovery rate of nitrate from synthetic wastewater by Chlorella-based photo-fermentation with optimal light-emitting diode illumination: from laboratory to pilot plant[J]. Bioresour Technol, 2022,348: 126779.
|
[72] |
AKHLAGHI N, G NAJAFPOUR-DARZI. A comprehensive review on biological hydrogen production[J]. Hydrogen Energy, 2020,45:22492-22512.
|
[73] |
MOHAMMEDAWI H H Al, ZNAD H, et al. Synergistic effects and optimization of photo-fermentative hydrogen production of Rhodobacter sphaeroides DSM 158[J]. Hydrogen Energy, 2018,43:15823-15834.
|
[74] |
REN Changpeng, ZHANG Sihu, LI Qing, et al. Pilot composite tubular bioreactor for outdoor photo-fermentation hydrogen production: from batch to continuous operation[J]. Bioresource Technology, 2024,401: 130705.
|
[75] |
SOARES J F, CONFORTIN T C, TODERO I, et al. Dark fermentative biohydrogen production from lignocellulosic biomass: technological challenges and future prospects[J]. Renew Sustain Energy Rev, 2020,117:109484.
|
[76] |
OSMAN A I, DEKA T J, BARUAH D C, et al. Critical challenges in biohydrogen production processes from the organic feedstocks[J]. Biomass Convers Biorefin, 2023,13(10):8383-8401.
|
[77] |
RANI P, YADAV D K, YADAV A, et al. Frontier in dark fermentative biohydrogen production from lignocellulosic biomass: challenges and future prospects[J]. Fuel, 2024,366: 131187.
|
[78] |
EMISHA L, PRINCE D, VIJAY S J, et al. Technological advancement in the production of biohydrogen from lignocellulosic biomass: a review[J]. Journal of Environmental Chemical Engineering, 2024,12(3): 113084.
|
[79] |
孙茹茹,姜霁珊,徐叶,等.暗发酵制氢代谢途径研究进展[J]. 上海师范大学学报(自然科学版),2020,49(6):614-621.
|
[80] |
REN N, GUO W, LIU B. et al. Biological hydrogen production from organic wastewater by dark fermentation in China: overview and prospects[J]. Front. Environ Sci Eng,2009,3:375-379.
|
[81] |
SHARMA, MEHDI S E H, PANDIT S, et al. Factors affecting hydrogen production in Reactor configurations, recent advances and strategies in biohydrogen production: a review[J]. Hydrogen Energy, 2024,61:1473-1484.
|
[82] |
ARVIN A, HOSSEINI M, AMIN M.M, et al. Efficient methane production from petrochemical wastewater in a single membrane-less microbial electrolysis cell: the effect of the operational parameters in batch and continuous mode on bioenergy recovery[J]. Environmental Health Science and Engineering, 2019,17:305-317.
|
[83] |
张杰,张建,曹晓强,等.微生物电解池强化垂直潜流人工湿地硝化反硝化脱氮研究[J]. 环境工程,2023,41(6):32-37
,70.
|
[84] |
ARUN J, SUNDARRAJAN P S, PAVITHRA K G, et al. New insights into microbial electrolysis cells (MEC) and microbial fuel cells (MFC) for simultaneous wastewater treatment and green fuel (hydrogen) generation[J]. Fuel, 2024,355: 129530.
|
[85] |
GUISASOLA A, BAEZA J A, MARONE A, et al. Opportunities for hydrogen production from urban/industrial wastewater in bioelectrochemical systems[M]//Microbial Electrochemical Technologies, CRC Press, Boca Raton, 2020: 225-243.
|
[86] |
GUERRERO-Sodric, J A BAEZA, A GUISASOLA. Enhancing bioelectrochemical hydrogen production from industrial wastewater using Ni-foam cathodes in a microbial electrolysis cell pilot plant[J]. Water Research, 2024,256: 121616.
|
[87] |
ASLAM, A BAHADAR, R LIAQUAT, et al. A novel application of Chlorella sorokiniana for green hydrogen production via microbial electrolysis and Waste Biorefinery[J]. Process Safety and Environmental Protection, 2024,189:164-176.
|
[88] |
ROUSSEAU R, ETCHEVERRY L, ROUBAUD E, et al. Microbial electrolysis cell (MEC): strengths, weaknesses and research needs from electrochemical engineering standpoint[J]. Appl Energy, 2020,257:113938.
|
[89] |
RATHI B S, KUMAR P S, RANGASAMY G, et al. A critical review on Biohydrogen generation from biomass[J]. International Jounral of Hydrogen Energy, 2024,52:115-138.
|
[90] |
SHARMA A K, GHODKE P K, MANNA S, et al. Emerging technologies for sustainable production of biohydrogen production from microalgae: a state-of-the-art review of upstream and downstream processes[J]. Bioresource Technology, 2021,42: 126057.
|
[91] |
LU C Y, WANG G T, ZHANG Q G, et al. Comparison of biorefinery characteristics: photo-fermentation biohydrogen, dark fermentation biohydrogen, biomethane, and bioethanol production[J]. Applied Energy, 2023,347: 121463.
|
[92] |
祝嘉禄,白海梅,夏四清.合流制大型污水处理厂全流程工艺建模模拟实践[J]. 净水技术,2024,43(增刊1):184-191.
|
[93] |
XU B, ZHANG Q, WU H H, et al. Integrated membrane process of tubular ultrafiltration-nanofiltration-electrodialysis-reverse osmosis for treating fracturing flowback fluid[J]. Cleaner Production, 2024,469:142995.
|
[94] |
CHEN J Q, WANG L, MA S H, et al. Separation of fine waste catalyst particles from methanol-to-olefin quench water via swirl regenerating micro-channel separation (SRMS): a pilot-scale study[J]. Process Safety and Environmental Protection, 2021, 152: 108-116.
|
[95] |
MA H P, LI J P, HU X P, et al. On-site source-separation of microparticles and reuse of coal gasification wastewater via a micro-channel separator: performance and separation mechanism[J]. Separation and Purification Technology, 2024,341:126565.
|
[96] |
CHEN F, HUANG H, GUO L, et al. The role of polarization in photocatalysis[J]. Angewandte Chemie International Edition, 2019, 58(30):10061-10073.
|
[97] |
WANG Z L. Piezopotential gated nanowire devices: piezotronics and piezo-phototronics[J]. Nano Today, 2010, 5(6):540-552.
|
[98] |
TU S, GUO Y, ZHANG Y, et al. Piezocatalysis and piezo-photocatalysis: catalysts classification and modification strategy, reaction mechanism, and practical application[J]. Advanced Functional Materials, 2020,30(48): 2005158.
|
[99] |
LIU W, FU P, ZHANG Y, et al. Efficient hydrogen production from wastewater remediation by piezoelectricity coupling advanced oxidation processes[J]. Proceedings of the National Academy of Sciences, 2023,120(7):e2218813120.
|
[100] |
LIU B, MANICA R, LIU Q, et al. Nanoscale transport during liquid film thinning inhibits bubble coalescing behavior in electrolyte solutions[J]. Physical Review Letters, 2023, 131(10): 104003.
|
[101] |
XU Xiao, WANG Shuo, YANG Q. Performance of a degassing cyclone with main and subsidiary chambers[J]. Chemical Engineering & Technology, 2022,45(1):34-42.
|
[102] |
CHEN Z, MENG C, RUAN H, et al. Removal of bubbles from electrodes in a planar cyclonic electrolyzer[J/OL]. Chemical Engineering and Processing-Process Intensification, 2022.DOI: 10.1016/j.cep.2022.109133.
|
[103] |
LU Hao, PAN Zhicheng, WANG Hualin, et al. Fiber coalescence treatment of oily wastewater: a new theory and application[J]. Journal of Hazardous Materials, 2021(36): 125188.
|