Citation: | KONG Wanting, LI Xuesong, WANG Zhiwei. RECENT ADVANCES IN ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY TECHNOLOGY FOR CHARACTERIZATION OF FOULING AND MASS TRANSFER PROCESSES ON NANOFILTRATION AND REVERSE OSMOSIS MEMBRANES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 51-62. doi: 10.13205/j.hjgc.202409005 |
[1] |
王志伟,戴若彬,张星冉,等. 膜法污水处理技术研究应用动态与未来可持续发展思考[J]. 土木与环境工程学报, 2022, 44(3): 86-103.
|
[2] |
MA B, ULBRICHT M, HU C, et al. Membrane life cycle management: an exciting opportunity for advancing the sustainability features of membrane separations[J]. Environmental Science & Technology, 2023, 57(8): 3013-3020.
|
[3] |
GAO Y, QIN J, WANG Z, et al. Backpulsing technology applied in MF and UF processes for membrane fouling mitigation: a review[J]. Journal of Membrane Science, 2019, 587: 117136.
|
[4] |
WANG Z, MA J, TANG C Y, et al. Membrane cleaning in membrane bioreactors: a review[J]. Journal of Membrane Science, 2014, 468: 276-307.
|
[5] |
AN X, ZHANG K, WANG Z, et al. Improving the water permeability and antifouling property of the nanofiltration membrane grafted with hyperbranched polyglycerol[J]. Journal of Membrane Science, 2020, 612(0): 118417.
|
[6] |
LI WANG T C, KEVIN E P, MASASHI K, et al. Significance of co-ion partitioning in salt transport through polyamide reverse osmosis membranes[J]. Environmental science & technology, 2023, 57(9): 3930-3939.
|
[7] |
ZHANG C, BAO Q, WU H, et al. Impact of polysaccharide and protein interactions on membrane fouling: particle deposition and layer formation[J]. Chemosphere, 2022, 296: 134056.
|
[8] |
WEI Y, HUNG H C, SUN F, et al. Achieving low-fouling surfaces with oppositely charged polysaccharides via LBL assembly[J]. Acta Biomater, 2016, 40: 16-22.
|
[9] |
MAIRAL A P, GREENBERG A R, KRANTZ W B, et al. Real-time measurement of inorganic fouling of RO desalination membranes using ultrasonic time-domain reflectometry[J]. Journal of Membrane Science, 1999, 159(1): 185-196.
|
[10] |
LI X, ZHANG H, HOU Y, et al. In situ investigation of combined organic and colloidal fouling for nanofiltration membrane using ultrasonic time domain reflectometry[J]. Desalination, 2015, 362: 43-51.
|
[11] |
郭雲,李胄彦,王志伟. 电化学膜分离技术在水处理领域的研究进展[J]. 环境工程, 2022, 40(12): 253-269.
|
[12] |
STOLOV M, FREGER V. Ion transport and specificity in polyamide membranes studied by conductivity and its activation energy[J]. Journal of Membrane Science, 2023, 678(0): 121616.
|
[13] |
ZHAI X H, DAI R B, LI X S, et al. Roles of anion-cation coupling transport and dehydration-induced ion-membrane interaction in precise separation of ions by nanofiltration membranes[J]. Environmental Science & Technology, 2022, 56(19): 14069-14079.
|
[14] |
曹楚南,张鉴清. 电化学阻抗谱导论[M]. 北京:科学出版社,2016.
|
[15] |
马克·欧瑞姆,伯纳德·特瑞博勒特作. 电化学阻抗谱[M]. 2版. 雍兴跃译. 北京:化学工业出版社,2022.
|
[16] |
PAJKOSSY T, JURCZAKOWSKI R. Electrochemical impedance spectroscopy in interfacial studies[J]. Current Opinion in Electrochemistry, 2017, 1(1): 53-58.
|
[17] |
GOH G L, TAY M F, LEE J M, et al. Potential of printed electrodes for electrochemical impedance spectroscopy (EIS): toward membrane fouling detection[J]. Advanced Electronic Materials, 2021, 7(10): 2100043.
|
[18] |
CHILCOTT T C, COSTER H G L, GEORGE E P. A novel method for the characterization of the double fixed charge (bipolar) membrane using impedance spectroscopy[J]. Journal of Membrane Science, 1995, 108(1): 185-197.
|
[19] |
LASIA B A. Electrochemical Impedance Spectroscopy and its Applications[M]. Springer, New York, 2014.
|
[20] |
马洪运,范永生,洪为臣,等. 液流电池理论与技术: 电化学阻抗谱技术原理和应用[J]. 储能科学与技术, 2014, 5: 544-549.
|
[21] |
MEI B A, MUNTESHARI O, LAU J, et al. Physical interpretations of nyquist plots for EDLC electrodes and devices[J]. The Journal of Physical Chemistry C, 2018, 122(1): 194-206.
|
[22] |
POTOTSKAYA V V, GICHAN O I. The Gerischer finite length impedance: a case of unequal diffusion coefficients[J]. Journal of Electroanalytical Chemistry, 2019, 852: 113511.
|
[23] |
FREGER V, BASON S. Characterization of ion transport in thin films using electrochemical impedance spectroscopy: I. principles and theory[J]. Journal of Membrane Science, 2007, 302(1): 1-9.
|
[24] |
YEO S Y, WANG Y, CHILCOTT T, et al. Characterizing nanostructure functionality of a cellulose triacetate forward osmosis membrane using electrical impedance spectroscopy[J]. Journal of Membrane Science, 2014, 467: 292-302.
|
[25] |
ZHAO Y J, WU K F, WANG Z J, et al. Fouling and cleaning of membrane-a literature review[J]. Journal of Environmental Sciences (China) English Ed, 2000, 12(2): 241-251.
|
[26] |
WANG Q, WANG Z, WU Z, et al. Insights into membrane fouling of submerged membrane bioreactors by characterizing different fouling layers formed on membrane surfaces[J]. Chemical Engineering Journal, 2012, 179: 169-177.
|
[27] |
VAN DEN BRINK P, VERGELDT F, VAN AS H, et al. The potential of mechanical cleaning of membranes from a membrane bioreactor[J]. Journal of Membrane Science, 2013, 429: 259-67.
|
[28] |
GIRALDO E, LECHEVALLIER M. Dynamic mathematical modeling of membrane fouling in submerged membrane bioreactors[J]. Proceedings of the Water Environment Federation, 2006, 2006: 4895-4913.
|
[29] |
EL RAYESS Y, ALBASI C, BACCHIN P, et al. Analysis of membrane fouling during cross-flow microfiltration of wine[J]. Innovative Food Science & Emerging Technologies, 2012, 16: 398-408.
|
[30] |
MENG F, CHAE S R, DREWS A, et al. Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material[J]. Water Research, 2009, 43(6): 1489-1512.
|
[31] |
WANG X M, WAITE T D. Role of gelling soluble and colloidal microbial products in membrane fouling[J]. Environmental Science & Technology, 2009, 43(24): 9341-9347.
|
[32] |
MA J, WANG Z, YANG Y, et al. Correlating microbial community structure and composition with aeration intensity in submerged membrane bioreactors by 454 high-throughput pyrosequencing[J]. Water Research, 2013, 47(2): 859-869.
|
[33] |
MALAEB L, LE-CLECH P, VROUWENVELDER J S, et al. Do biological-based strategies hold promise for biofouling control in MBRs?[J]. Water Research, 2013, 47(15): 5447-5463.
|
[34] |
HO J S, SIM L N, WEBSTER R D, et al. Monitoring fouling behavior of reverse osmosis membranes using electrical impedance spectroscopy: a field trial study[J]. Desalination, 2017, 407: 75-84.
|
[35] |
CHEN J C, LI Q, ELIMELECH M. In situ monitoring techniques for concentration polarization and fouling phenomena in membrane filtration[J]. Advances in Colloid and Interface Science, 2004, 107(2): 83-108.
|
[36] |
JING Y, CHAPLIN B P. Electrochemical impedance spectroscopy study of membrane fouling characterization at a conductive sub-stoichiometric TiO2 reactive electrochemical membrane: transmission line model development[J]. Journal of Membrane Science, 2016, 511: 238-249.
|
[37] |
ANTONY A, CHILCOTT T, COSTER H, et al. In situ structural and functional characterization of reverse osmosis membranes using electrical impedance spectroscopy[J]. Journal of Membrane Science, 2013, 425-426: 89-97.
|
[38] |
XU Y, WANG M, MA Z, et al. Electrochemical impedance spectroscopy analysis of sulfonated polyethersulfone nanofiltration membrane[J]. Desalination, 2011, 271(1): 29-33.
|
[39] |
LASIA A. Modeling of Impedance of Porous Electrodes[M]. Springer, New York, 2009: 67-137.
|
[40] |
CHILCOTT T C, CHAN M Y, GAEDT L P, et al. Electrical impedance spectroscopy characterization of conducting membranes I. theory[J]. Journal of Membrane Science, 2002, 195: 153-167.
|
[41] |
GAEDT L, CHILCOTT T C, CHAN M, et al. Electrical impedance spectroscopy characterization of conducting membranes: II. experimental[J]. Journal of Membrane Science, 2002, 195(2): 169-180.
|
[42] |
COSTER H G L, CHILCOTT T C, COSTER A C F. Impedance spectroscopy of interfaces, membranes and ultrastructures[J]. Bioelectrochemistry and Bioenergetics, 1996, 40: 79-98.
|
[43] |
KAVANAGH J M, HUSSAIN S, CHILCOTT T C, et al. Fouling of reverse osmosis membranes using electrical impedance spectroscopy: measurements and simulations[J]. Desalination, 2009, 236(1): 187-193.
|
[44] |
CEN J, KAVANAGH J, COSTER H, et al. Fouling of reverse osmosis membranes by cane molasses fermentation wastewater: detection by electrical impedance spectroscopy techniques[J]. Desalination and Water Treatment-DESALIN WATER TREAT, 2012, 51: 1-7.
|
[45] |
AHMED F, LALIA B S, KOCHKODAN V, et al. Electrically conductive polymeric membranes for fouling prevention and detection: a review[J]. Desalination, 2016, 391: 1-15.
|
[46] |
NICKERSON T R, ANTONIO E N, MCNALLY D P, et al. Unlocking the potential of polymeric desalination membranes by understanding molecular-level interactions and transport mechanisms[J]. Chemical Science, 2023, 14(4): 751-770.
|
[47] |
ANTONY A, CHILCOTT T, COSTER H, et al. Real time, in-situ monitoring of surface and structural properties of thin film polymeric membranes using electrical impedance spectroscopy[J]. Procedia Engineering, 2012, 44: 1412-1414.
|
[48] |
HO J S, SIM L N, GU J, et al. A threshold flux phenomenon for colloidal fouling in reverse osmosis characterized by transmembrane pressure and electrical impedance spectroscopy[J]. Journal of Membrane Science, 2016, 500: 55-65.
|
[49] |
HO J S, LOW J H, SIM L N, et al. In-situ monitoring of biofouling on reverse osmosis membranes: detection and mechanistic study using electrical impedance spectroscopy[J]. Journal of Membrane Science, 2016, 518: 229-242.
|
[50] |
SIM L N, GU J, COSTER H G L, et al. Quantitative determination of the electrical properties of RO membranes during fouling and cleaning processes using electrical impedance spectroscopy[J]. Desalination, 2016, 379: 126-136.
|
[51] |
CEN J, VUKAS M, BARTON G, et al. Real time fouling monitoring with Electrical Impedance Spectroscopy[J]. Journal of Membrane Science, 2015, 484: 133-9.
|
[52] |
SIM L N, WANG Z J, GU J, et al. Detection of reverse osmosis membrane fouling with silica, bovine serum albumin and their mixture using in-situ electrical impedance spectroscopy[J]. Journal of Membrane Science, 2013, 443: 45-53.
|
[53] |
CHONG T H, WONG F S, FANE A G. Implications of critical flux and cake enhanced osmotic pressure (CEOP) on colloidal fouling in reverse osmosis: experimental observations[J]. Journal of Membrane Science, 2008, 314(1): 101-111.
|
[54] |
HOEK E M V, KIM A S, ELIMELECH M. Influence of crossflow membrane filter geometry and shear rate on colloidal fouling in reverse osmosis and nanofiltration separations[J]. Environmental Engineering Science, 2002, 19(6): 357-372.
|
[55] |
LU Y C, CHUANG Y S, CHEN Y Y, et al. Bacteria detection utilizing electrical conductivity[J]. Biosensors and Bioelectronics, 2008, 23(12): 1856-1861.
|
[56] |
MATIN A, KHAN Z, ZAIDI S M J, et al. Biofouling in reverse osmosis membranes for seawater desalination: phenomena and prevention[J]. Desalination, 2011, 281: 1-16.
|
[57] |
CAÑAS A, ARIZA M J, BENAVENTE J. Characterization of active and porous sublayers of a composite reverse osmosis membrane by impedance spectroscopy, streaming and membrane potentials, salt diffusion and X-ray photoelectron spectroscopy measurements[J]. Journal of Membrane Science, 2001, 183(1): 135-146.
|
[58] |
CAÑAS A, BENAVENTE J. Electrochemical characterization of an asymmetric nanofiltration membrane with NaCl and KCl solutions: influence of membrane asymmetry on transport parameters[J]. Journal of Colloid and Interface Science, 2002, 246(2): 328-334.
|
[59] |
BASON S, OREN Y, FREGER V. Characterization of ion transport in thin films using electrochemical impedance spectroscopy: II: examination of the polyamide layer of RO membranes[J]. Journal of Membrane Science, 2007, 302(1): 10-19.
|
[60] |
YIN C, WANG S, ZHANG Y, et al. Correlation between the pore resistance and water flux of the cellulose acetate membrane[J]. Environmental Science: Water Research & Technology, 2017, 3(6): 1037-1041.
|
[61] |
MONTALVILLO M, SILVA V, PALACIO L, et al. Charge and dielectric characterization of nanofiltration membranes by impedance spectroscopy[J]. Journal of Membrane Science, 2014, 454: 163-173.
|
[62] |
EFLIGENIR A, FIEVET P, DéON S, et al. Characterization of the isolated active layer of a NF membrane by electrochemical impedance spectroscopy[J]. Journal of Membrane Science, 2015, 477: 172-182.
|
[63] |
STOLOV M, FREGER V. Membrane charge weakly affects ion transport in reverse osmosis[J]. Environmental Science & Technology Letters, 2020, 7(6): 440-445.
|
[64] |
SHANG W J, WANG X L, YU Y X. Theoretical calculation on the membrane potential of charged porous membranes in 1-1, 1-2, 2-1 and 2-2 electrolyte solutions[J]. Journal of Membrane Science, 2006, 285(1): 362-375.
|
[65] |
ZHU H, SZYMCZYK A, GHOUFI A. Multiscale modelling of transport in polymer-based reverse-osmosis/nanofiltration membranes: present and future[J]. Discover Nano, 2024, 19(1): 91-112.
|
[66] |
SUN F, LI K, LI N, et al. Exploring mass transfer mechanisms in reverse osmosis membranes: a comparative study of SDM and DSPM-DE models[J]. Desalination, 2024, 586: 117833.
|
[67] |
BASON S, OREN Y, FREGER V. Ion transport in the polyamide layer of RO membranes: composite membranes and free-standing films[J]. Journal of Membrane Science, 2011, 367(1): 119-126.
|
[68] |
SHAFFER D L, FELDMAN K E, CHAN E P, et al. Characterizing salt permeability in polyamide desalination membranes using electrochemical impedance spectroscopy[J]. Journal of Membrane Science, 2019, 583: 248-257.
|
[69] |
LIANG Y, GAO F, WANG L, et al. In-situ monitoring of polyelectrolytes adsorption kinetics by electrochemical impedance spectroscopy: application in fabricating nanofiltration membranes via layer-by-layer deposition[J]. Journal of Membrane Science, 2021, 619: 118747.
|
[70] |
FRIDMAN-BISHOP N, FREGER V. What makes aromatic polyamide membranes superior: new insights into ion transport and membrane structure[J]. Journal of Membrane Science, 2017, 540: 120-128.
|
[71] |
DRAZEVIC E, BASON S, KOSUTIC K, et al. Enhanced partitioning and transport of phenolic micropollutants within polyamide composite membranes[J]. Environmental Science & Technology, 2012, 46(6): 3377-3383.
|
[72] |
FRIDMAN-BISHOP N, FREGER V. When salt-rejecting polymers meet protons: an electrochemical impedance spectroscopy investigation[J]. Langmuir, 2017, 33(6): 1391-1397.
|
[73] |
LONG M, YANG L, WU T, et al. A sub-10 nm polyamide nanofiltration membrane from polyvinylpyrrolidone-mediated interfacial polymerization[J]. Journal of Membrane Science, 2024, 700: 122729.
|
[74] |
KARAN S, JIANG Z, LIVINGSTON A G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation[J]. Science, 2015, 348(6241): 1347-1351.
|
[75] |
HUANG Q, LUO Q, CHEN Z, et al. The effect of electrolyte concentration on electrochemical impedance for evaluating polysulfone membranes[J]. Environmental Science: Water Research & Technology, 2018, 4(8): 1145-1151.
|
[76] |
STOLOV M, FREGER V. Ion transport and specificity in polyamide membranes studied by conductivity and its activation energy[J]. Journal of Membrane Science, 2023, 678: 121616.
|
[77] |
ROMERO V, VÁZQUEZ M I, BENAVENTE J. Study of ionic and diffusive transport through a regenerated cellulose nanoporous membrane[J]. Journal of Membrane Science, 2013, 433: 152-159.
|
[78] |
SHIRSATH A V, RAËL S, BONNET C, et al. Electrochemical pressure impedance spectroscopy for investigation of mass transfer in polymer electrolyte membrane fuel cells[J]. Current Opinion in Electrochemistry, 2020, 20: 82-87.
|
[79] |
王芸. 电化学阻抗谱在复合材料结构和性能研究中的应用[D]. 武汉:华中科技大学, 2011.
|
[80] |
EPSZTEIN R, DUCHANOIS R M, RITT C L, et al. Towards single-species selectivity of membranes with subnanometre pores[J]. Nature Nanotechnology, 2020, 15(6): 426-436.
|