Citation: | JIA Mengfei, ZHANG Gai, QI Lu, FAN Haitao, WANG Hongchen. RESEARCH ON OPERATIONAL EFFICIENCY AND MECHANISM OF RAPID FILTRATION PROCESS FOR OVERFLOW SEWAGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 63-73. doi: 10.13205/j.hjgc.202409006 |
[1] |
BOTTURI A, OZBAYRAM E G, TONDERA K, et al. Combined sewer overflows: a critical review on best practice and innovative solutions to mitigate impacts on environment and human health[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(15): 1585-1618.
|
[2] |
PHILLIPS P J, CHALMERS A T, GRAY J L, et al. Combined sewer overflows: an environmental source of hormones and wastewater micropollutants[J]. Environmental Science & Technology, 2012, 46(10): 5336-5343.
|
[3] |
史秀芳, 卢亚静, 潘兴瑶, 等. 合流制溢流污染控制技术、管理与政策研究进展[J]. 给水排水, 2020, 56(增刊1): 740-747.
|
[4] |
李俊奇, 李小静, 王文亮, 等. 合流制溢流污染的影响及其控制技术发展[J]. 给水排水, 2024, 60(4): 46-53.
|
[5] |
PERRY W B, AHMADIAN R, MUNDAY M, et al. Addressing the challenges of combined sewer overflows[J]. Environmental Pollution, 2024, 343: 123225.
|
[6] |
CHEN W, WANG W, HUANG G, et al. The capacity of grey infrastructure in urban flood management: a comprehensive analysis of grey infrastructure and the green-grey approach[J]. International Journal of Disaster Risk Reduction, 2021, 54: 102045.
|
[7] |
赵泽坤, 车伍, 赵杨, 等. 中美合流制溢流污染控制概要比较[J]. 给水排水, 2018, 54(11): 128-134.
|
[8] |
杨正, 赵杨, 车伍, 等. 典型发达国家合流制溢流控制的分析与比较[J]. 中国给水排水, 2020, 36(14): 29-36.
|
[9] |
ZHOU J, PANG Y, FU G, et al. A review of urban rainwater harvesting in China[J]. Water Reuse, 2023, 13(1): 1-17.
|
[10] |
刘会芳, 田凤瑛, 冯露菲, 等. 中国海绵城市建设的挑战与机遇[J]. 新型城镇化, 2024(4): 77-80.
|
[11] |
XU C, LIU Z, CHEN Z, et al. Environmental and economic benefit comparison between coupled grey-green infrastructure system and traditional grey one through a life cycle perspective[J]. Resources, Conservation and Recycling, 2021, 174: 105804.
|
[12] |
ALVES A, VOJINOVIC Z, KAPELAN Z, et al. Exploring trade-offs among the multiple benefits of green-blue-grey infrastructure for urban flood mitigation[J]. Science of the Total Environment, 2020, 703: 134980.
|
[13] |
刘宇轩, 高雅弘, 王振北, 等. 城镇合流制排水系统溢流污染控制综述[J]. 环境工程, 2023, 41(12): 32-47.
|
[14] |
周杨军, 解铭, 薛江儒, 等. 关于合流制排水系统提质增效方法与措施的思考[J]. 中国给水排水, 2021, 37(16): 1-7.
|
[15] |
SHEWA W A, DAGNEW M. Revisiting chemically enhanced primary treatment of wastewater: a review[J]. Sustainability, 2020, 12(15): 5928.
|
[16] |
TABOADA-SANTOS A, RIVADULLA E, PAREDES L, et al. Comprehensive comparison of chemically enhanced primary treatment and high-rate activated sludge in novel wastewater treatment plant configurations[J]. Water Research, 2020, 169: 115258.
|
[17] |
LEE D, MIN K, KANG J H. Performance evaluation and a sizing method for hydrodynamic separators treating urban stormwater runoff[J]. Water science and technology, 2014, 69(10): 2122-2131.
|
[18] |
孙巍. CSOs污染特点及核心处理工艺的选择[J]. 给水排水, 2021, 57(增刊1): 138-144.
|
[19] |
MOKHTARI F, SHAMSHIRSAZ M, LATIFI M, et al. Compressibility behaviour of warp knitted spacer fabrics based on elastic curved bar theory[J]. Journal of Engineered Fibers and Fabrics, 2011, 6(4): 155892501100600404.
|
[20] |
YAO K M, HABIBIAN M T, O'MELIA C R. Water and waste water filtration. Concepts and applications[J]. Environmental Science & Technology, 1971, 5(11): 1105-1112.
|
[21] |
BARHATE R, LOONG C K, RAMAKRISHNA S. Preparation and characterization of nanofibrous filtering media[J]. Journal of Membrane Science, 2006, 283(1/2): 209-218.
|
[22] |
DU X, LI Y. Experimental comparison and optimization on granular bed filters with three types of filling schemes[J]. Applied Energy, 2019, 253: 113563.
|
[23] |
MORACI N, BILARDI S, MANDAGLIO M. Factors affecting geotextile filter long-term behaviour and their relevance in design[J]. Geosynthetics International, 2022, 29(1): 19-42.
|
[24] |
NIU S, PARK K, YU J, et al. Operation and performance evaluation of high-speed filter using porous non-woven filamentous fibre for the treatment of turbid water[J]. Environmental Technology, 2016, 37(5): 577-589.
|
[25] |
BAE S D, SAGEHASHI M, SAKODA A. Activated carbon membrane with filamentous carbon for water treatment[J]. Carbon, 2003, 41(15): 2973-2979.
|
[26] |
BULEJKO P. Numerical comparison of prediction models for aerosol filtration efficiency applied on a hollow-fiber membrane pore structure[J]. Nanomaterials, 2018, 8(6): 447.
|
[27] |
QI Y, THAPA K B, HOADLEY A F. Application of filtration aids for improving sludge dewatering properties:a review[J]. Chemical Engineering Journal, 2011, 171(2): 373-284.
|
[28] |
LORENZEN S, YE Y, CHEN V, et al. Direct observation of fouling phenomena during cross-flow filtration: influence of particle surface charge[J]. Journal of Membrane Science, 2016, 510: 546-558.
|
[29] |
PALMER M R, NEPF H M, PETTERSSON T J, et al. Observations of particle capture on a cylindrical collector: implications for particle accumulation and removal in aquatic systems[J]. Limnology and Oceanography, 2004, 49(1): 76-85.
|
[30] |
RANADE M. Adhesion and removal of fine particles on surfaces[J]. Aerosol Science and Technology, 1987, 7(2): 161-176.
|
[31] |
XU F, WEI M, ZHANG X, et al. How pore hydrophilicity influences water permeability?[J]. Research, 2019(11):1-10.
|
[32] |
MIAO A, WEI M, XU F, et al. Influence of membrane hydrophilicity on water permeability: an experimental study bridging simulations[J]. Journal of Membrane Science, 2020, 604: 118087.
|