Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 42 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
CHEN Jianjun, LONG Jisheng, CHEN Lin, BAI Li, LI Junhua. STATUS AND DEVELOPMENT TREND OF INTEGRATED TECHNOLOGY FOR MUTI-POLLUTANT CONTROL IN WASTE INCINERATION FLUE GAS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 211-221. doi: 10.13205/j.hjgc.202409020
Citation: CHEN Jianjun, LONG Jisheng, CHEN Lin, BAI Li, LI Junhua. STATUS AND DEVELOPMENT TREND OF INTEGRATED TECHNOLOGY FOR MUTI-POLLUTANT CONTROL IN WASTE INCINERATION FLUE GAS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 211-221. doi: 10.13205/j.hjgc.202409020

STATUS AND DEVELOPMENT TREND OF INTEGRATED TECHNOLOGY FOR MUTI-POLLUTANT CONTROL IN WASTE INCINERATION FLUE GAS

doi: 10.13205/j.hjgc.202409020
  • Received Date: 2024-01-17
    Available Online: 2024-12-02
  • Incineration power generation has become the main way for urban solid waste treatment in China. With the increasingly strict emission standards of incineration flue gas pollutants, multi-pollutant removal through series of step-by-step purification has problems such as long process, large landing area, crowded equipment, high investment and operating costs. To solve the above problems, it is necessary to develop the flue gas purification process from single pollutant control to multi-pollutant collaborative control, and the integrated purification of flue gas multi-pollutants has become the new trend. This paper discusses the mechanism, technical characteristics, key influencing factors, and advantages and disadvantages of the multi-pollutant integrated collaborative purification technology for waste incineration flue gas, and its engineering application progress. Finally, suggestions and prospects for future research are put forward, hoping to provide some enlightenment for developing new integrated purification technology and promote the development of flue gas treatment for the small waste incineration power plants in counties.
  • loading
  • [1]
    房德职, 李克勋. 国内外生活垃圾焚烧发电技术进展[J]. 发电技术, 2019, 40(4): 367-376.
    [2]
    JONES A M, HARRISON R M.Emission of ultrafine particles from the incineration of municipal solid waste: a review[J]. Atmospheric Environment, 2016, 140: 519-528.
    [3]
    CLOIREC P L. Treatments of polluted emissions from incinerator gases: a succinct review[J]. Reviews in Environmental Science and Bio/Technology, 2012, 11(4): 381-392.
    [4]
    上海市环境保护局,上海市质量技术监督局. 生活垃圾焚烧大气污染物排放标准:DB 31/768—2013[S]. 上海, 2013.
    [5]
    河北省生态环境厅,河北省市场监督管理局. 河北省生活垃圾焚烧处理大气污染控制标准:DB 13/5325—2021[S]. 河北, 2021.
    [6]
    海南省市场监督管理局. 海南省生活垃圾焚烧污染控制标准:DB 46/484—2019[S]. 海南, 2019.
    [7]
    VEHLOW J. Air pollution control systems in WtE units: an overview[J]. Waste Management, 2015, 37: 58-74.
    [8]
    Best Available Techniques (BAT) Reference Document for Waste Incineration[R]. 2019.
    [9]
    王琪, 黄启飞, 李丽,等. 生活垃圾焚烧污染控制标准 (征求意见稿)编制说明[R]. 中国环境科学研究院, 2010.
    [10]
    刘辉, 向怡, 史学峰,等. 某垃圾焚烧厂烟气净化工艺选择分析研究[J]. 环境科学与管理, 2016,41(4): 101-104.
    [11]
    张建超, 王秋麟, 金晶,等. SCR催化剂低温协同脱除二噁英和NOx研究进展[J]. 应用化工, 2019, 48(1): 7.
    [12]
    ZHAO H Y, MENG P, GAO S, et al. Recent advances in simultaneous removal of NOx and VOCs over bifunctional catalysts via SCR and oxidation reaction[J]. Science of the Total Environment, 2024, 906: 167553.
    [13]
    能士峰, 刘庆岭, 张旺,等. 垃圾焚烧SCR脱硝催化剂的研究进展[J]. 现代化工, 2022,42(2): 31-34.
    [14]
    WANG D, CHEN Q Z, ZHANG X, et al. Multipollutant control (MPC) of flue gas from stationary sources using SCR technology: a critical review[J]. Environmental Science & Technology, 2021, 55(5): 2743-2766.
    [15]
    LI G B, SHEN K, WANG L, et al. Synergistic degradation mechanism of chlorobenzene and NOx over the multi-active center catalyst: the role of NO2, Brønsted acidic site, oxygen vacancy[J]. Applied Catalysis B: Environmental, 2021, 286: 119865.
    [16]
    GALLASTEGI-VILLA M, ARANZABAL A, GONZÁLEZ-MARCOS J A, et al. Tailoring dual redox-acid functionalities in VOx/TiO2/ZSM5 catalyst for simultaneous abatement of PCDD/Fs and NOx from municipal solid waste incineration[J]. Applied Catalysis B: Environmental, 2017, 205: 310-318.
    [17]
    SU G J, HUANG L Y, LIU S, et al. The combined disposal of 1,2,4-trichlorobenzene and nitrogen oxides using the synthesized Ce0.2TiAlαOx micro/nanomaterial[J]. Catalysis Science & Technology, 2015, 5(2): 1041-1051.
    [18]
    GAN L N, SHI W B, LI K Z, et al. Synergistic promotion effect between nox and chlorobenzene removal on MnOx-CeO2 catalyst[J]. ACS Applied Materials & Interfaces, 2018, 10(36): 30426-30432.
    [19]
    WANG D, CHEN J J, PENG Y, et al. Dechlorination of chlorobenzene on vanadium-based catalysts for low-temperature SCR[J]. Chemical Communications, 2018, 54(16): 2032-2035.
    [20]
    FAN C, LI K Z, PENG Y, et al. Fe-doped α-MnO2 nanorods for the catalytic removal of NOx and chlorobenzene: the relationship between lattice distortion and catalytic redox properties[J]. Physical Chemistry Chemical Physics, 2019, 21(46): 25880-25888.
    [21]
    HUANG X, LIU Z, WANG D, et al. The effect of additives and intermediates on vanadia-based catalyst for multi-pollutant control[J]. Catalysis Science & Technology, 2020, 10(2): 323-326.
    [22]
    HUANG X, WANG D, YANG Q L, et al. Multi-pollutant control (MPC) of NO and chlorobenzene from industrial furnaces using a vanadia-based SCR catalyst[J]. Applied Catalysis B: Environmental, 2021, 285: 119835.
    [23]
    YUAN X, PENG Y, ZHU X, et al. Anti-poisoning mechanisms of Sb on vanadia-based catalysts for NOx and chlorobenzene multi-pollutant control[J]. Environmental Science & Technology, 2023, 57(28): 10211-10220.
    [24]
    SONG Z J, YU S X, LIU H, et al. Carbon/chlorinate deposition on MnOx-CeO2 catalyst in chlorobenzene combustion: the effect of SCR flue gas[J]. Chemical Engineering Journal, 2022, 433: 133552.
    [25]
    SONG Z J, PENG Y, ZHAO X G, et al. Roles of Ru on the V2O5-WO3/TiO2 catalyst for the simultaneous purification of NOx and chlorobenzene: a dechlorination promoter and a redox inductor[J]. ACS Catalysis, 2022, 12(18): 11505-11517.
    [26]
    WANG J Q, XING Y, SU W, et al. Promotional effect of Sn additive on the chlorine resistance over SnMnOx/LDO catalysts for synergistic removal of NOx and o-DCB Electronic supplementary information (ESI) available.[J]. Catalysis Science & Technology, 2022, 12(12): 3863-3873.
    [27]
    XING Y, ZHANG H, SU W, et al. Catalytic activity and stability of a Cr modified Co-Fe LDO catalyst in the simultaneous catalytic reduction of NOx and oxidation of o-DCB[J]. New Journal of Chemistry, 2022, 46(18): 8626-8635.
    [28]
    YANG B, JIN Q J, HUANG Q, et al. Synergetic catalytic removal of chlorobenzene and NOx from waste incineration exhaust over MnNb0.4Ce0.2Ox catalysts: performance and mechanism study[J]. Journal of Rare Earths, 2020, 38(11): 1178-1189.
    [29]
    YIN R Q, CHEN J J, MI J X, et al. Breaking the activity-selectivity trade-off for simultaneous catalytic elimination of nitric oxide and chlorobenzene via FeVO4-Fe2O3 interfacial charge transfer[J]. ACS Catalysis, 2022, 12(7): 3797-3806.
    [30]
    黄旭. 钒基催化剂净化水泥窑烟气多污染物及铊中毒机理研究[D]. 北京:清华大学, 2021.
    [31]
    阙正斌, 李德波, 肖显斌,等. 中国垃圾焚烧烟气多污染物协同脱除技术研究进展[J]. 洁净煤技术, 2023,29(6):115-127.
    [32]
    赵珍瑶. 低温等离子体在垃圾焚烧烟气治理中的应用[J]. 能源与环境, 2020, (2): 85-86.
    [33]
    EM Van VELDHUIZEN, ZHOU L M, RUTGERS W R. Combined effects of pulsed discharge removal of NO, SO2, and NH3 from flue gas[J]. J Plasma Chemistry Plasma Processing, 1998, 18: 91-111.
    [34]
    张丽军. 低温等离子体协同处理含汞废气和二噁英的研究[D]. 北京:华北电力大学, 2017.
    [35]
    皇甫林. 烟气多污染物一体化脱除催化滤芯的制备与性能研究[D]. 北京:中国科学院大学, 2021.
    [36]
    竹涛, 张星, 马名烽,等. 气体氛围对低温等离子体协同控制汞和二噁英的影响[J]. 高电压技术, 2019, 45(6): 1907-1914.
    [37]
    黄付平, 黄智宁, 谢启军,等. 低温热解耦合高压等离子体技术处理农村生活垃圾工程应用[J]. 环境工程, 2019, 37(5): 196-199.
    [38]
    施小东, 翁林钢, 戚科技,等. 一种使用低温等离子体净化垃圾焚烧炉烟气的工艺:CN201811358878.7[P]. 2019.
    [39]
    侯海瑞. 催化滤袋在垃圾焚烧烟气多污染物去除中的应用[J]. 化工装备技术, 2022, 43(5): 11-14.
    [40]
    邱娟. 锰基催化剂催化降解二噁英及催化滤料性能研究[D]. 杭州:浙江大学, 2022.
    [41]
    朱学诚. 适用于过滤催化复合材料的锰基催化剂低温氧化挥发性有机物的机理研究[D]. 杭州:浙江大学,2019.
    [42]
    KANG M, PARK E D, KIM J M, et al. Simultaneous removal of particulates and NO by the catalytic bag filter containing MnOx catalysts[J]. Korean Journal of Chemical Engineering, 2009, 26(1): 86-89.
    [43]
    ABUBAKAR A, LI C M, LIN H F, et al. Simultaneous removal of particulates and NO by the catalytic bag filter containing V2O5-MoO3/TiO2[J]. Korean Journal of Chemical Engineering, 2020, 37(4): 633-640.
    [44]
    YANG B, SHEN Y S, SU Y, et al. Removal characteristics of nitrogen oxides and particulates of a novel Mn-Ce-Nb-Ox/P84 catalytic filter applied for cement kiln[J]. Journal of Industrial and Engineering Chemistry, 2017, 50: 133-141.
    [45]
    史玉婷, 皇甫林, 李长明,等. V2O5-MoO3/TiO2催化滤袋的制备及中试应用[J]. 化工学报, 2021, 72(11): 5598-5606.
    [46]
    单良,尹荣强,王慧,等. VMoTi/玻纤复合催化滤布制备及其除尘协同脱硝性能研究[J]. 化工学报, 2021, 72(9): 4892-4899.
    [47]
    陈雪红, 郑玉婴, 付彬彬,等. 原位聚合MnO2/PoPD@PPS复合滤料及其NH3-SCR脱硝性能研究[J]. 燃料化学学报, 2017, 45(12): 1514-1521.
    [48]
    美国戈尔GORE公司官方网站, ‘资源中心-产品案例’ [EB/OL]..
    [49]
    李歌, 王宝冬, 马子然,等. 烟气多污染物协同处理催化陶瓷过滤管的研究进展[J]. 化工进展, 2020, 39(8): 3307-3319.
    [50]
    武广龙, 赵静, 何海军,等. 陶瓷催化滤管烟气污染物一体化脱除技术研究进展[J]. 能源环境保护, 2020, 34(5): 1-5.
    [51]
    JEDLICKA F, JECHA D, BEBAR L, et al. Combined flue gas cleaning from persistent organic compounds and nitrogen oxides in the multifunction filter[J]. CET Journal, 2012,29.
    [52]
    SARACCO G, SPECCHIA S, SPECCHIA V. Catalytically modified fly-ash filters for NOx reduction with NH3[J]. Chemical Engineering Science, 1996, 51(24): 5289-5297.
    [53]
    SARACCO G, SPECCHIA V. Simultaneous removal of nitrogen oxides and fly-ash from coal-based power-plant flue gases[J]. Applied Thermal Engineering, 1998, 18(11): 1025-1035.
    [54]
    张喻升, 李长明, 曾红,等. 钒钨钛/堇青石基烟气脱硝催化陶瓷滤芯的研制[J]. 过程工程学报, 2017, 17(6): 1249-1256.
    [55]
    HEIDENREICH S, NACKEN M, HACKEL M, et al. Catalytic filter elements for combined particle separation and nitrogen oxides removal from gas streams[J]. Powder Technology, 2008, 180(1): 86-90.
    [56]
    CHOI J H, KIM J H, BAK Y C, et al. Pt-V2O5-WO3/TiO2 catalysts supported on SiC filter for NO reduction at low temperature[J]. Korean Journal of Chemical Engineering, 2005, 22(6): 844-851.
    [57]
    SONG Y L, ZHANG Y Z, WU Q W, et al. Experimental study on the desulfurization, denitration, and dust removal characteristics of ceramic fiber filter tubes[J]. Energy & Fuels, 2022, 36(7): 3715-3726.
    [58]
    周旭健, 李清毅, 徐灏,等. 固体吸附剂在烟气污染物一体化脱除中的研究评述及展望[J]. 中国电力, 2018(12): 163-169.
    [59]
    CHI K H, CHANG S H, HUANG C H, et al. Partitioning and removal of dioxin-like congeners in flue gases treated with activated carbon adsorption[J]. Chemosphere, 2006, 64(9): 1489-1498.
    [60]
    李帅, 胡红云, 黄永达,等. 垃圾焚烧电厂重金属排放与控制[J]. 能源环境保护, 2023, 37(3): 36-49.
    [61]
    林欢. 生活垃圾焚烧发电烟气净化工艺的研究及应用[J]. 中国环保产业, 2019(3): 42-45.
    [62]
    蔡晶晶, 周亚东, 张强,等. 活性焦一体化脱硫脱硝烟气净化技术应用[J]. 中国环保产业, 2017(5): 38-41.
    [63]
    WANG W Y, ZHONG Q, YE Z C, et al. Simultaneous reduction of SO2 and NOx in an entrained-flow reactor[J]. Fuel, 1995, 74(2): 267-272.
    [64]
    NIU S L, HAN K H, LU C M. Release of sulfur dioxide and nitric oxide and characteristic of coal combustion under the effect of calcium based organic compounds[J]. Chemical Engineering Journal, 2011, 168(1): 255-261.
    [65]
    GHORISHI S, SINGER C F, JOZEWICZ W S, et al. Simultaneous control of Hg0, SO2, and NOx by novel oxidized calcium-based sorbents[J]. Journal of the Air Waste Management Association, 2002, 52(3): 273-278.
    [66]
    孙丽娜, 李凯, 汤立红,等. 常见金属氧化物烟气脱硫研究进展[J]. 化工进展, 2017, 36(1): 181-188.
    [67]
    晏振辉. 生活垃圾与危险废物焚烧烟气脱卤技术[J]. 上海建设科技, 2020(4): 78-80,84.
    [68]
    WANG H, YUAN B, HAO R L, et al. A critical review on the method of simultaneous removal of multi-air-pollutant in flue gas[J]. Chemical Engineering Journal, 2019, 378: 122155.
    [69]
    ZHAO L K,LI C T,WANG Y, et al. Simultaneous removal of elemental mercury and NO from simulated flue gas using a CeO2 modified V2O5WO3/TiO2 catalyst[J]. Catalysis Science & Technology, 2016, 6(15): 6076-6086
    [70]
    HUTSON N D, KRZYZYNSKA R, SRIVASTAVA R K. Simultaneous removal of SO2, NOx, and Hg from coal flue gas using a NaClO2-enhanced wet scrubber[J]. Industrial Engineering Chemistry Research, 2008(16): 47.
    [71]
    LIU Y X, PAN J F, DU M, et al. Advanced oxidative removal of nitric oxide from flue gas by homogeneous photo-Fenton in a photochemical reactor[J]. 2013, 36(5): 781-787.
    [72]
    WANG Z H, ZHOU J H, ZHU Y Q, et al. Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: experimental results[J]. Fuel Processing Technology, 2007, 88(8): 817-823.
    [73]
    SI T, WANG C B, YAN X N, et al. Simultaneous removal of SO2 and NOx by a new combined spray-and-scattered-bubble technology based on preozonation: from lab scale to pilot scale[J]. Applied Energy, 2019, 242: 1528-1538.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (26) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return