Citation: | SHI Jianqiang, WANG Bing, CHEN Jianjun, WANG Jiancheng, LI Junhua. RESEARCH PROGRESS OF MERCURY OXIDATION CATALYSTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 229-239. doi: 10.13205/j.hjgc.202409022 |
[1] |
GAO Y, ZHANG Z, WU J, et al. A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases[J]. Environmental Science & Technology, 2013, 47(19): 10813-10823.
|
[2] |
LIU T, XIONG Z, NI P, et al. Review on adsorbents in elemental mercury removal in coal combustion flue gas, smelting flue gas, and natural gas[J]. Chemical Engineering Journal, 2023, 454: 140095.
|
[3] |
MCNUTT M. Mercury and health[J]. Science, 2013, 341(6153): 1430.
|
[4] |
WANG C, ZHANG X, MEI J, et al. Outstanding performance of magnetically separable sulfureted MoO3/Fe-Ti spinel for gaseous Hg0 recovery from smelting flue gas: mechanism and adsorption kinetics[J]. Environmental Science & Technology, 2020, 54(12): 7659-7668.
|
[5] |
MACKEY T K, CONTRERAS J T, LIANG B A. The minamata convention on mercury: attempting to address the global controversy of dental amalgam use and mercury waste disposal[J]. Science of the Total Environment, 2014, 472: 125-129.
|
[6] |
OBRIST D, AGNAN Y, JISKRA M, et al. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution[J]. Nature, 2017, 547(7662): 201-204.
|
[7] |
冯新斌, 史建波, 李平, 等. 我国汞污染研究与履约进展[J]. 中国科学院院刊, 2020, 35(11): 1344-1350.
|
[8] |
UNEP. Global Mercury Assessment 2018[M]. Geneva: United Nations Environment Programme Chemicals and Health Branch,2019.
|
[9] |
WU Q, WANG S, LI G, et al. Temporal trend and spatial distribution of speciated atmospheric mercury emissions in China during 1978—2014[J]. Environmental Science & Technology, 2016, 50(24): 13428-13435.
|
[10] |
HONG Q, XU H, LI J, et al. Adsorption of gaseous mercury for engineering optimization: from macrodynamics to adsorption kinetics and thermodynamics[J]. ACS ES&T Engineering, 2021, 1(5): 865-873.
|
[11] |
SU J, YANG J, ZHANG M, et al. Mechanism of Mo and Sb species improving Hg0 oxidation performance of V2O5/TiO2 catalyst: density function theory study[J]. Applied Surface Science, 2023, 617: 156612.
|
[12] |
YANG Z, LI H, YANG J, et al. Nanosized copper selenide functionalized zeolitic imidazolate framework-8 (CuSe/ZIF-8) for efficient immobilization of gas-phase elemental mercury[J]. Advance Functional Materials, 2019, 29(17): 1807191.
|
[13] |
YANG Y, LIU J, ZHANG B, et al. Mechanistic studies of mercury adsorption and oxidation by oxygen over spinel-type MnFe2O4[J]. Journal of Hazardous Materials, 2017, 321: 154-161.
|
[14] |
YANG Y, XU W, HUANG R, et al. Enhancement of Hg0 adsorption performance at high temperature using Cu-Zn bimetallic sulfide with elevated thermal stability[J]. Chemical Engineering Journal, 2022, 431: 134028.
|
[15] |
JIANG Z, HU Y, WANG R, et al. Elemental mercury removal over MnO-CoO-modified HZSM-5 adsorbents: performance and characterizations[J]. Journal of the Energy Institute, 2023, 111: 101394.
|
[16] |
ZHU Y, LI C, LYU Y, et al. Insight into the effect of SO2 on the Hg0 removal performance over a 1V-8Ce/AC sorbent at low temperatures[J]. Journal of Hazardous Materials, 2021, 402: 123502.
|
[17] |
ZHOU Z, LIU X, HU Y, et al. An efficient sorbent based on CuCl2 loaded CeO2-ZrO2 for elemental mercury removal from chlorine-free flue gas[J]. Fuel, 2018, 216: 356-363.
|
[18] |
ZHAO S, PUDASAINEE D, DUAN Y, et al. A review on mercury in coal combustion process: content and occurrence forms in coal, transformation, sampling methods, emission and control technologies[J]. Progress in Energy and Combustion Science, 2019, 73: 26-64.
|
[19] |
LIU D, XU K, MA J, et al. Advances in rational design of catalysts for efficient Hg0 removal[J]. Fuel, 2023, 331: 125922.
|
[20] |
LIU Y, LIU L, WANG Y. A critical review on removal of gaseous pollutants using sulfate radical-based advanced oxidation technologies[J]. Environmental Science & Technology, 2021, 55(14): 9691-9710.
|
[21] |
XU H, HONG Q, LI J, et al. Heterogeneous reaction mechanisms and functional materials for elemental mercury removal from industrial flue gas[J]. ACS ES&T Engineering, 2021, 1(10): 1383-1400.
|
[22] |
PEI H, LI X, SONG Y, et al. LaFeO3 perovskite nanoparticles for efficient capture of elemental mercury from coal-fired flue gas[J]. Fuel, 2022, 309: 122134.
|
[23] |
XU H, MA Y, ZHAO S, et al. Enhancement of Ce1-xSnxO2 support in LaMnO3 for the catalytic oxidation and adsorption of elemental mercury[J]. RSC Advances, 2016, 6(68): 63559-63567.
|
[24] |
CHEN H, HUO Q, WANG Y, et al. Upcycling coal liquefaction residue into sulfur-rich activated carbon for efficient Hg0 removal from coal-fired flue gas[J]. Fuel Processing Technology, 2020, 206.
|
[25] |
LO'PEZ-ANTO'N M A, M DI'AZ-SOMOANO, MARTI'NEZ-TARAZONA M R. Retention of elemental mercury in fly ashes in different atmospheres[J]. Energy & Fuels, 2007, 21: 99-103.
|
[26] |
THOMAS K G, LANIB B W, OFFEN G R. Mechanisms governing the fate of mercury in coal-fired power systems[J]. Fuel Processing Technology, 2007, 89(2): 139-151.
|
[27] |
ZHOU Q, DUAN Y, CHEN M, et al. Effect of flue gas component and ash composition on elemental mercury oxidation/adsorption by NH4Br modified fly ash[J]. Chemical Engineering Journal, 2018, 345: 578-585.
|
[28] |
SERRE S D, SILCOX G D. Adsorption of elemental mercury on the residual carbon in coal fly ash[J]. Industrial & Engineering Chemistry Research, 2000, 39(6): 1723-1730.
|
[29] |
LIU H, CHEN H, WANG S, et al. Synergistic catalytic oxidation of Hg0 and NH3-SCR of NO over MnCeTiOx catalyst in flue gas[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107574.
|
[30] |
WANG S X, ZHANG L, LI G H, et al. Mercury emission and speciation of coal-fired power plants in China[J]. Atmospheric Chemistry and Physics, 2010, 10: 1183-2010.
|
[31] |
王青峰, 王丹, 刘越, 等. 湿法烟气脱硫系统中氧化态汞的还原和影响机制综述[J]. 环境工程, 2016, 34(8): 8488.
|
[32] |
LIU Y, WANG Y, WANG Q, et al. A study on removal of elemental mercury in flue gas using Fenton solution[J]. Journal of Hazardous Materials, 2015, 292: 164-172.
|
[33] |
KRZYŻYŃSKA R, HUTSON N D, ZHAO Y, et al. Mercury removal and its fate in oxidant enhanced wet flue gas desulphurization slurry[J]. Fuel, 2018, 211: 876-882.
|
[34] |
CHANG L, ZHANG Y, LIU H, et al. Migration and identification of mercury species in wet flue gas desulfurization system using temperature programmed decomposition[J]. Journal of Cleaner Production, 2020, 276: 124211.
|
[35] |
DRANGA B A, LAZAR L, KOESER H. Oxidation catalysts for elemental mercury in flue gases: a review[J]. Catalysts, 2012, 2(1): 139-170.
|
[36] |
SHI J, CHEN J, XIONG S, et al. Structure-directing role of support on Hg0 oxidation over V2O5/TiO2 catalyst revealed for NOx and Hg0 simultaneous control in an SCR reactor[J]. Environmental Science & Technology, 2022, 56(13): 9702-9711.
|
[37] |
WANG C, HONG Q, MA C, et al. Novel promotion of sulfuration for Hg0 conversion over V2O5-MoO3/TiO2 with HCl at low temperatures: Hg0 adsorption, Hg0 oxidation, and Hg2+ adsorption[J]. Environmental Science & Technology, 2021, 55(10): 7072-7081.
|
[38] |
ZHANG X, FANG B, CUI L, et al. Effects of HCl and O2 on Hg0 oxidation in the SCR catalyst[J]. Energy & Fuels, 2021, 35(14): 11382-11392.
|
[39] |
ZHANG X, GAO C, WANG Z, et al. Co3O4 with ordered pore structure derived from wood vessels for efficient Hg0 oxidation[J]. Chinese Journal of Chemical Engineering, 2022, 50: 215-221.
|
[40] |
WANG D, CHEN Q, ZHANG X, et al. Multipollutant control (MPC) of flue gas from stationary sources using SCR technology: a critical review[J]. Environmental Science & Technology, 2021, 55(5): 2743-2766.
|
[41] |
WANG Y, SI W, PENG Y, et al. Investigation on removal of NO and Hg0 with different Cu species in Cu-SAPO-34 zeolites[J]. Catalysis Communications, 2019, 119: 91-95.
|
[42] |
WANG T, LIU J, YANG Y, et al. Catalytic conversion of mercury over Ce doped Mn/SAPO-34 catalyst: sulphur tolerance and SO2/SO3 conversion[J]. Journal of Hazardous Materials, 2020, 381: 120986.
|
[43] |
LIU X, MI J, SHI L, et al. In situ modulation of A-site vacancies in LaMnO3.15 perovskite for surface lattice oxygen activation and boosted redox reactions[J]. Angewandte Chemie International Edition, 2021, 60(51): 26747-26754.
|
[44] |
WANG Z, LIU J, YANG Y, et al. Insights into the catalytic behavior of LaMnO3 perovskite for Hg0 oxidation by HCl[J]. Journal of Hazardous Materials, 2020, 383: 121156.
|
[45] |
XU H, QU Z, ZHAO S, et al. Enhancement of heterogeneous oxidation and adsorption of Hg0 in a wide temperature window using SnO2 supported LaMnO3 perovskite oxide[J]. Chemical Engineering Journal, 2016, 292: 123-129.
|
[46] |
XU H, QU Z, ZONG C, et al. Catalytic oxidation and adsorption of Hg0 over low-temperature NH3-SCR LaMnO3 perovskite oxide from flue gas[J]. Applied Catalysis B: Environmental, 2016, 186: 30-40.
|
[47] |
YANG J, NA Y, HU Y, et al. Granulation of Mn-based perovskite adsorbent for cyclic Hg0 capture from coal combustion flue gas[J]. Chemical Engineering Journal, 2023, 459: 141679.
|
[48] |
MHATRE D, BHATIA D. Insights into the adsorption, alloy formation, and poisoning effects of Hg on monometallic and bimetallic adsorbents[J]. Langmuir, 2022, 38(22): 6841-6859.
|
[49] |
HUO Q, YUE C, WANG Y, et al. Effect of impregnation sequence of Pd/Ce/gamma-Al2O3 sorbents on Hg0 removal from coal derived fuel gas[J]. Chemosphere, 2020, 249: 126164.
|
[50] |
LIM D H, ABOUD S, WILCOX J. Investigation of adsorption behavior of mercury on Au(111) from first principles[J]. Environmental Science & Technology, 2012, 46(13): 7260-7266.
|
[51] |
LIU Z, SRIRAM V, LI C, et al. Mechanistic and kinetic studies of elemental mercury oxidation over a RuO2/rutile TiO2 catalyst[J]. Catalysis Science & Technology, 2017, 7(20): 4669-4679.
|
[52] |
YAN N, CHEN W, CHEN J, et al. Significance of RuO2 modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas[J]. Environmental Science & Technology, 2011, 45(13): 5725-5730.
|
[53] |
YANG Y, LIU J, WANG Z, et al. A complete catalytic reaction scheme for Hg0 oxidation by HCl over RuO2/TiO2 catalyst[J]. Journal of Hazardous Materials, 2019, 373: 660-670.
|
[54] |
ZHAO L, LI C, ZHANG X, et al. A review on oxidation of elemental mercury from coal-fired flue gas with selective catalytic reduction catalysts[J]. Catalysis Science & Technology, 2015, 5(7): 3459-3472.
|
[55] |
LI H, WU C Y, LI Y, et al. Superior activity of MnOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures[J]. Applied Catalysis B: Environmental, 2012, 111-112: 381-388.
|
[56] |
YANG Y, MIAO S, LIU J, et al. Cost-effective manganese ore sorbent for elemental mercury removal from flue gas[J]. Environmental Science & Technology, 2019, 53(16): 9957-9965.
|
[57] |
LI B, HOU Y, GAO J, et al. Rational amelioration of redox equilibrium by constructing hollow nanotube Co-Mn/TiO2 catalyst to boost simultaneous removal of NO and Hg0[J]. Applied Catalysis B: Environmental, 2024, 341: 123353.
|
[58] |
LI C, YUE E, WU J, et al. Copper-based sorbents and catalysts for elemental mercury removal from gas stream: a review[J]. Industrial & Engineering Chemistry Research, 2023, 62(33): 12829-12844.
|
[59] |
LI H, WU S, LI L, et al. CuO-CeO2/TiO2 catalyst for simultaneous NO reduction and Hg0 oxidation at low temperatures[J]. Catalysis Science & Technology, 2015, 5(12): 5129-5138.
|
[60] |
WANG H, WANG B, ZHOU J, et al. CuO modified vanadium-based SCR catalysts for Hg0 oxidation and NO reduction[J]. Journal of Environmental Management, 2019, 239: 17-22.
|
[61] |
YAMAGUCHI A, AKIHO H, ITO S. Mercury oxidation by copper oxides in combustion flue gases[J]. Powder Technology, 2008, 180(1/2): 222-226.
|
[62] |
MEI Z, SHEN Z, ZHAO Q, et al. Removing and recovering gas-phase elemental mercury by CuxCo3-xO4 (0.75≤x≤2.25) in the presence of sulphur compounds[J]. Chemosphere, 2008, 70(8): 1399-1404.
|
[63] |
SRIRAM V, LI C, LIU Z, et al. Reaction kinetic study of elemental mercury vapor oxidation with CuCl2[J]. Chemical Engineering Journal, 2018, 343: 244-257.
|
[64] |
KONG F, QIU J, LIU H, et al. Catalytic oxidation of gas-phase elemental mercury by nano-Fe2O3[J]. Journal of Environmental Sciences, 2011, 23(4): 699-704.
|
[65] |
WANG D, YAO Q, LIU S, et al. Effect of support on simultaneous removal of NO and Hg0 over Cu and Fe catalysts[J]. Journal of the Energy Institute, 2019, 92(6): 1852-1863.
|
[66] |
LI H, WU C Y, LI Y, et al. Impact of SO2 on elemental mercury oxidation over CeO2-TiO2 catalyst[J]. Chemical Engineering Journal, 2013, 219: 319-326.
|
[67] |
LI H, WU C Y, LI Y, et al. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas[J]. Environmental Science & Technology, 2011, 45(17): 7394-7400.
|
[68] |
CHANG H, WU Q, ZHANG T, et al. Design strategies for CeO2-MoO3 catalysts for deNOx and Hg0 oxidation in the presence of HCl: the significance of the surface acid-base properties[J]. Environmental Science & Technology, 2015, 49(20): 12388-12394.
|
[69] |
WANG Y, SHEN B, HE C, et al. Simultaneous removal of NO and Hg0 from flue gas over Mn-Ce/Ti-PILCs[J]. Environmental Science & Technology, 2015, 49(15): 9355-9363.
|
[70] |
CHEN C, JIA W, LIU S, et al. Simultaneous NO removal and Hg0 oxidation over CuO doped V2O5-WO3/TiO2 catalysts in simulated coal-fired flue gas[J]. Energy & Fuels, 2018, 32(6): 7025-7034.
|
[71] |
MEI J, SUN P, XIAO X, et al. Influence mechanism of the compositions in coal-fired flue gas on Hg0 oxidation over commercial SCR catalyst[J]. Journal of Industrial and Engineering Chemistry, 2019, 75: 130-137.
|
[72] |
SHIN D, KIM M H, HAN J W. Structure-activity relationship of VOx/TiO2 catalysts for mercury oxidation: a DFT study[J]. Applied Surface Science, 2021, 552: 149462.
|
[73] |
YANG Y, XU W, WANG J, et al. New insight into simultaneous removal of NO and Hg0 on CeO2-modified V2O5/TiO2 catalyst: a new modification strategy[J]. Fuel, 2019, 249: 178-187.
|
[74] |
LIU R, XU W, TONG L, et al. Mechanism of Hg0 oxidation in the presence of HCl over a commercial V2O5-WO3/TiO2 SCR catalyst[J]. Journal of Environmental Sciences, 2015, 36: 76-83.
|
[75] |
ZHAO H, EZEH C I, YIN S, et al. MoO3-adjusted δ-MnO2 nanosheet for catalytic oxidation of Hg0 to Hg2+[J]. Applied Catalysis B: Environmental, 2020, 263: 117829.
|
[76] |
ZHAO L, LI C, LI S, et al. Simultaneous removal of elemental mercury and NO in simulated flue gas over V2O5/ZrO2-CeO2 catalyst[J]. Applied Catalysis B: Environmental, 2016, 198: 420-430.
|
[77] |
LI C, BREWE D, LEE J Y. Effects of impregnation sequence for Mo-modified V-based SCR catalyst on simultaneous Hg0 oxidation and NO reduction[J]. Applied Catalysis B: Environmental, 2020, 270: 118854.
|
[78] |
SHAN W, YU Y, ZHANG Y, et al. Theory and practice of metal oxide catalyst design for the selective catalytic reduction of NO with NH3[J]. Catalysis Today, 2021, 376: 292-301.
|
[79] |
SHI J, CHEN J, WANG J, et al. Vanadium-density-dependent reactivity for simultaneous removal of NOx and Hg0 over V2O5/TiO2 catalyst[J]. Fuel, 2023, 332: 126189.
|
[80] |
LI C, SRIRAM V, LEE J Y. A kinetic study of Hg0 oxidation over Mo-promoted V-based SCR catalyst[J]. Chemical Engineering Journal, 2022, 427: 131864.
|
[81] |
YEO W, SHIN D, KIM M H, et al. Change in the electronic environment of the VOx active center via support modification to enhance Hg oxidation activity[J]. ACS Catalysis, 2023, 13: 3775-3787.
|
[82] |
SU J, YANG J, ZHANG M, et al. Improvement mechanism of Ru species on Hg0 oxidation reactivity over V2O5/TiO2 catalyst: a density functional theory study[J]. Chemical Engineering Science, 2023, 274: 118689.
|
[83] |
ZHAO L, LI C, ZHANG J, et al. Promotional effect of CeO2 modified support on V2O5-WO3/TiO2 catalyst for elemental mercury oxidation in simulated coal-fired flue gas[J]. Fuel, 2015, 153: 361-369.
|
[84] |
ZHAO L, LI C, LI S, et al. Simultaneous removal of Hg0 and NO in simulated flue gas on transition metal oxide M' (M'=Fe2O3, MnO2, and WO3) doping on V2O5/ZrO2-CeO2 catalysts[J]. Applied Surface Science, 2019, 483: 260-269.
|
[85] |
WANG H, WANG B, SUN Q, et al. New insights into the promotional effects of Cu and Fe over V2O5-WO3/TiO2 NH3-SCR catalysts towards oxidation of Hg0[J]. Catalysis Communications, 2017, 100: 169-172.
|
[86] |
CHEN C, JIA W, LIU S, et al. Catalytic performance of CuCl2-modified V2O5-WO3/TiO2 catalyst for Hg0 oxidation in simulated flue gas[J]. Korean Journal of Chemical Engineering, 2018, 35(3): 637-644.
|
[87] |
ZHAO L, HE Q S, LI L, et al. Research on the catalytic oxidation of Hg0 by modified SCR catalysts[J]. Journal of Fuel Chemistry and Technology, 2015, 43(5): 628-634.
|
[88] |
杨子文, 佟莉, 左朋莱, 等. 不同烟气组分对Cu2O改性V2O5-MoO3/TiO2脱硝催化剂汞氧化性能的影响[J]. 环境工程学报, 2022, 16(9): 2911-2920.
|
[89] |
SHI J, WANG Z, MI J, et al. To be support or promoter: the mode of introducing ceria into commercial V2O5/TiO2 catalyst for enhanced Hg0 oxidation[J]. Journal of Hazardous Materials, 2023, 454: 131489.
|
[90] |
LIU R, XU W, TONG L, et al. Role of NO in Hg0 oxidation over a commercial selective catalytic reduction catalyst V2O5-WO3/TiO2[J]. Journal of Environmental Sciences, 2015, 38: 126-132.
|
[91] |
WANG Z, LIU J, ZHANG B, et al. Mechanism of heterogeneous mercury oxidation by HBr over V2O5/TiO2 catalyst[J]. Environmental Science & Technology, 2016, 50(10): 5398-5404.
|
[92] |
CHIU C H, HSI H C, LIN HP, et al. Effects of properties of manganese oxide-impregnated catalysts and flue gas condition on multipollutant control of Hg0 and NO[J]. Journal of Hazardous Materials, 2015, 291: 1-8.
|
[93] |
YANG J, SU J, CHEN L, et al. Mercury removal using various modified V/Ti-based SCR catalysts: a review[J]. Journal of Hazardous Materials, 2022, 436: 129115.
|
[94] |
SUAREZ NEGREIRA A, WILCOX J. DFT study of Hg oxidation across vanadia-titania SCR catalyst under flue gas conditions[J]. The Journal of Physical Chemistry C, 2013, 117(4): 1761-1772.
|