Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 42 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
SHI Jianqiang, WANG Bing, CHEN Jianjun, WANG Jiancheng, LI Junhua. RESEARCH PROGRESS OF MERCURY OXIDATION CATALYSTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 229-239. doi: 10.13205/j.hjgc.202409022
Citation: SHI Jianqiang, WANG Bing, CHEN Jianjun, WANG Jiancheng, LI Junhua. RESEARCH PROGRESS OF MERCURY OXIDATION CATALYSTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 229-239. doi: 10.13205/j.hjgc.202409022

RESEARCH PROGRESS OF MERCURY OXIDATION CATALYSTS

doi: 10.13205/j.hjgc.202409022
  • Received Date: 2024-03-23
    Available Online: 2024-12-02
  • With the increasingly prominent global environmental issues, especially the high attention paid to controlling atmospheric mercury pollution, researchers have made significant progress in research on the removal technology of elemental mercury (Hg0) from coal-fired flue gas and other industrial emissions. Among them, mercury oxidation catalysts play a core role, effectively reducing atmospheric mercury emissions by catalyzing the conversion of Hg0 into divalent mercury compounds that are easy to capture and treat. Although there have been certain research achievements, the design and development of new efficient, stable, and adaptable Hg0 oxidation catalysts still face many challenges presently. This article systematically reviews Hg0 control technology and several main types of Hg0 oxidation catalysts, including molecular sieves, perovskites, precious metal catalysts, transition metal oxides, and vanadium-based SCR catalysts. A detailed description of the characteristics, advantages and disadvantages of various Hg0 oxidation catalysts is given. In addition, the article delves into the possible mechanisms of mercury oxidation, including homogeneous and multiphase oxidation mechanisms, as well as key factors affecting mercury oxidation performance. This review not only enriches the theoretical foundation of mercury pollution prevention and control, but also provides guidance for more efficient and practical Hg0 oxidation catalysts design in the future.
  • loading
  • [1]
    GAO Y, ZHANG Z, WU J, et al. A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases[J]. Environmental Science & Technology, 2013, 47(19): 10813-10823.
    [2]
    LIU T, XIONG Z, NI P, et al. Review on adsorbents in elemental mercury removal in coal combustion flue gas, smelting flue gas, and natural gas[J]. Chemical Engineering Journal, 2023, 454: 140095.
    [3]
    MCNUTT M. Mercury and health[J]. Science, 2013, 341(6153): 1430.
    [4]
    WANG C, ZHANG X, MEI J, et al. Outstanding performance of magnetically separable sulfureted MoO3/Fe-Ti spinel for gaseous Hg0 recovery from smelting flue gas: mechanism and adsorption kinetics[J]. Environmental Science & Technology, 2020, 54(12): 7659-7668.
    [5]
    MACKEY T K, CONTRERAS J T, LIANG B A. The minamata convention on mercury: attempting to address the global controversy of dental amalgam use and mercury waste disposal[J]. Science of the Total Environment, 2014, 472: 125-129.
    [6]
    OBRIST D, AGNAN Y, JISKRA M, et al. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution[J]. Nature, 2017, 547(7662): 201-204.
    [7]
    冯新斌, 史建波, 李平, 等. 我国汞污染研究与履约进展[J]. 中国科学院院刊, 2020, 35(11): 1344-1350.
    [8]
    UNEP. Global Mercury Assessment 2018[M]. Geneva: United Nations Environment Programme Chemicals and Health Branch,2019.
    [9]
    WU Q, WANG S, LI G, et al. Temporal trend and spatial distribution of speciated atmospheric mercury emissions in China during 1978—2014[J]. Environmental Science & Technology, 2016, 50(24): 13428-13435.
    [10]
    HONG Q, XU H, LI J, et al. Adsorption of gaseous mercury for engineering optimization: from macrodynamics to adsorption kinetics and thermodynamics[J]. ACS ES&T Engineering, 2021, 1(5): 865-873.
    [11]
    SU J, YANG J, ZHANG M, et al. Mechanism of Mo and Sb species improving Hg0 oxidation performance of V2O5/TiO2 catalyst: density function theory study[J]. Applied Surface Science, 2023, 617: 156612.
    [12]
    YANG Z, LI H, YANG J, et al. Nanosized copper selenide functionalized zeolitic imidazolate framework-8 (CuSe/ZIF-8) for efficient immobilization of gas-phase elemental mercury[J]. Advance Functional Materials, 2019, 29(17): 1807191.
    [13]
    YANG Y, LIU J, ZHANG B, et al. Mechanistic studies of mercury adsorption and oxidation by oxygen over spinel-type MnFe2O4[J]. Journal of Hazardous Materials, 2017, 321: 154-161.
    [14]
    YANG Y, XU W, HUANG R, et al. Enhancement of Hg0 adsorption performance at high temperature using Cu-Zn bimetallic sulfide with elevated thermal stability[J]. Chemical Engineering Journal, 2022, 431: 134028.
    [15]
    JIANG Z, HU Y, WANG R, et al. Elemental mercury removal over MnO-CoO-modified HZSM-5 adsorbents: performance and characterizations[J]. Journal of the Energy Institute, 2023, 111: 101394.
    [16]
    ZHU Y, LI C, LYU Y, et al. Insight into the effect of SO2 on the Hg0 removal performance over a 1V-8Ce/AC sorbent at low temperatures[J]. Journal of Hazardous Materials, 2021, 402: 123502.
    [17]
    ZHOU Z, LIU X, HU Y, et al. An efficient sorbent based on CuCl2 loaded CeO2-ZrO2 for elemental mercury removal from chlorine-free flue gas[J]. Fuel, 2018, 216: 356-363.
    [18]
    ZHAO S, PUDASAINEE D, DUAN Y, et al. A review on mercury in coal combustion process: content and occurrence forms in coal, transformation, sampling methods, emission and control technologies[J]. Progress in Energy and Combustion Science, 2019, 73: 26-64.
    [19]
    LIU D, XU K, MA J, et al. Advances in rational design of catalysts for efficient Hg0 removal[J]. Fuel, 2023, 331: 125922.
    [20]
    LIU Y, LIU L, WANG Y. A critical review on removal of gaseous pollutants using sulfate radical-based advanced oxidation technologies[J]. Environmental Science & Technology, 2021, 55(14): 9691-9710.
    [21]
    XU H, HONG Q, LI J, et al. Heterogeneous reaction mechanisms and functional materials for elemental mercury removal from industrial flue gas[J]. ACS ES&T Engineering, 2021, 1(10): 1383-1400.
    [22]
    PEI H, LI X, SONG Y, et al. LaFeO3 perovskite nanoparticles for efficient capture of elemental mercury from coal-fired flue gas[J]. Fuel, 2022, 309: 122134.
    [23]
    XU H, MA Y, ZHAO S, et al. Enhancement of Ce1-xSnxO2 support in LaMnO3 for the catalytic oxidation and adsorption of elemental mercury[J]. RSC Advances, 2016, 6(68): 63559-63567.
    [24]
    CHEN H, HUO Q, WANG Y, et al. Upcycling coal liquefaction residue into sulfur-rich activated carbon for efficient Hg0 removal from coal-fired flue gas[J]. Fuel Processing Technology, 2020, 206.
    [25]
    LO'PEZ-ANTO'N M A, M DI'AZ-SOMOANO, MARTI'NEZ-TARAZONA M R. Retention of elemental mercury in fly ashes in different atmospheres[J]. Energy & Fuels, 2007, 21: 99-103.
    [26]
    THOMAS K G, LANIB B W, OFFEN G R. Mechanisms governing the fate of mercury in coal-fired power systems[J]. Fuel Processing Technology, 2007, 89(2): 139-151.
    [27]
    ZHOU Q, DUAN Y, CHEN M, et al. Effect of flue gas component and ash composition on elemental mercury oxidation/adsorption by NH4Br modified fly ash[J]. Chemical Engineering Journal, 2018, 345: 578-585.
    [28]
    SERRE S D, SILCOX G D. Adsorption of elemental mercury on the residual carbon in coal fly ash[J]. Industrial & Engineering Chemistry Research, 2000, 39(6): 1723-1730.
    [29]
    LIU H, CHEN H, WANG S, et al. Synergistic catalytic oxidation of Hg0 and NH3-SCR of NO over MnCeTiOx catalyst in flue gas[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107574.
    [30]
    WANG S X, ZHANG L, LI G H, et al. Mercury emission and speciation of coal-fired power plants in China[J]. Atmospheric Chemistry and Physics, 2010, 10: 1183-2010.
    [31]
    王青峰, 王丹, 刘越, 等. 湿法烟气脱硫系统中氧化态汞的还原和影响机制综述[J]. 环境工程, 2016, 34(8): 8488.
    [32]
    LIU Y, WANG Y, WANG Q, et al. A study on removal of elemental mercury in flue gas using Fenton solution[J]. Journal of Hazardous Materials, 2015, 292: 164-172.
    [33]
    KRZYŻYŃSKA R, HUTSON N D, ZHAO Y, et al. Mercury removal and its fate in oxidant enhanced wet flue gas desulphurization slurry[J]. Fuel, 2018, 211: 876-882.
    [34]
    CHANG L, ZHANG Y, LIU H, et al. Migration and identification of mercury species in wet flue gas desulfurization system using temperature programmed decomposition[J]. Journal of Cleaner Production, 2020, 276: 124211.
    [35]
    DRANGA B A, LAZAR L, KOESER H. Oxidation catalysts for elemental mercury in flue gases: a review[J]. Catalysts, 2012, 2(1): 139-170.
    [36]
    SHI J, CHEN J, XIONG S, et al. Structure-directing role of support on Hg0 oxidation over V2O5/TiO2 catalyst revealed for NOx and Hg0 simultaneous control in an SCR reactor[J]. Environmental Science & Technology, 2022, 56(13): 9702-9711.
    [37]
    WANG C, HONG Q, MA C, et al. Novel promotion of sulfuration for Hg0 conversion over V2O5-MoO3/TiO2 with HCl at low temperatures: Hg0 adsorption, Hg0 oxidation, and Hg2+ adsorption[J]. Environmental Science & Technology, 2021, 55(10): 7072-7081.
    [38]
    ZHANG X, FANG B, CUI L, et al. Effects of HCl and O2 on Hg0 oxidation in the SCR catalyst[J]. Energy & Fuels, 2021, 35(14): 11382-11392.
    [39]
    ZHANG X, GAO C, WANG Z, et al. Co3O4 with ordered pore structure derived from wood vessels for efficient Hg0 oxidation[J]. Chinese Journal of Chemical Engineering, 2022, 50: 215-221.
    [40]
    WANG D, CHEN Q, ZHANG X, et al. Multipollutant control (MPC) of flue gas from stationary sources using SCR technology: a critical review[J]. Environmental Science & Technology, 2021, 55(5): 2743-2766.
    [41]
    WANG Y, SI W, PENG Y, et al. Investigation on removal of NO and Hg0 with different Cu species in Cu-SAPO-34 zeolites[J]. Catalysis Communications, 2019, 119: 91-95.
    [42]
    WANG T, LIU J, YANG Y, et al. Catalytic conversion of mercury over Ce doped Mn/SAPO-34 catalyst: sulphur tolerance and SO2/SO3 conversion[J]. Journal of Hazardous Materials, 2020, 381: 120986.
    [43]
    LIU X, MI J, SHI L, et al. In situ modulation of A-site vacancies in LaMnO3.15 perovskite for surface lattice oxygen activation and boosted redox reactions[J]. Angewandte Chemie International Edition, 2021, 60(51): 26747-26754.
    [44]
    WANG Z, LIU J, YANG Y, et al. Insights into the catalytic behavior of LaMnO3 perovskite for Hg0 oxidation by HCl[J]. Journal of Hazardous Materials, 2020, 383: 121156.
    [45]
    XU H, QU Z, ZHAO S, et al. Enhancement of heterogeneous oxidation and adsorption of Hg0 in a wide temperature window using SnO2 supported LaMnO3 perovskite oxide[J]. Chemical Engineering Journal, 2016, 292: 123-129.
    [46]
    XU H, QU Z, ZONG C, et al. Catalytic oxidation and adsorption of Hg0 over low-temperature NH3-SCR LaMnO3 perovskite oxide from flue gas[J]. Applied Catalysis B: Environmental, 2016, 186: 30-40.
    [47]
    YANG J, NA Y, HU Y, et al. Granulation of Mn-based perovskite adsorbent for cyclic Hg0 capture from coal combustion flue gas[J]. Chemical Engineering Journal, 2023, 459: 141679.
    [48]
    MHATRE D, BHATIA D. Insights into the adsorption, alloy formation, and poisoning effects of Hg on monometallic and bimetallic adsorbents[J]. Langmuir, 2022, 38(22): 6841-6859.
    [49]
    HUO Q, YUE C, WANG Y, et al. Effect of impregnation sequence of Pd/Ce/gamma-Al2O3 sorbents on Hg0 removal from coal derived fuel gas[J]. Chemosphere, 2020, 249: 126164.
    [50]
    LIM D H, ABOUD S, WILCOX J. Investigation of adsorption behavior of mercury on Au(111) from first principles[J]. Environmental Science & Technology, 2012, 46(13): 7260-7266.
    [51]
    LIU Z, SRIRAM V, LI C, et al. Mechanistic and kinetic studies of elemental mercury oxidation over a RuO2/rutile TiO2 catalyst[J]. Catalysis Science & Technology, 2017, 7(20): 4669-4679.
    [52]
    YAN N, CHEN W, CHEN J, et al. Significance of RuO2 modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas[J]. Environmental Science & Technology, 2011, 45(13): 5725-5730.
    [53]
    YANG Y, LIU J, WANG Z, et al. A complete catalytic reaction scheme for Hg0 oxidation by HCl over RuO2/TiO2 catalyst[J]. Journal of Hazardous Materials, 2019, 373: 660-670.
    [54]
    ZHAO L, LI C, ZHANG X, et al. A review on oxidation of elemental mercury from coal-fired flue gas with selective catalytic reduction catalysts[J]. Catalysis Science & Technology, 2015, 5(7): 3459-3472.
    [55]
    LI H, WU C Y, LI Y, et al. Superior activity of MnOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures[J]. Applied Catalysis B: Environmental, 2012, 111-112: 381-388.
    [56]
    YANG Y, MIAO S, LIU J, et al. Cost-effective manganese ore sorbent for elemental mercury removal from flue gas[J]. Environmental Science & Technology, 2019, 53(16): 9957-9965.
    [57]
    LI B, HOU Y, GAO J, et al. Rational amelioration of redox equilibrium by constructing hollow nanotube Co-Mn/TiO2 catalyst to boost simultaneous removal of NO and Hg0[J]. Applied Catalysis B: Environmental, 2024, 341: 123353.
    [58]
    LI C, YUE E, WU J, et al. Copper-based sorbents and catalysts for elemental mercury removal from gas stream: a review[J]. Industrial & Engineering Chemistry Research, 2023, 62(33): 12829-12844.
    [59]
    LI H, WU S, LI L, et al. CuO-CeO2/TiO2 catalyst for simultaneous NO reduction and Hg0 oxidation at low temperatures[J]. Catalysis Science & Technology, 2015, 5(12): 5129-5138.
    [60]
    WANG H, WANG B, ZHOU J, et al. CuO modified vanadium-based SCR catalysts for Hg0 oxidation and NO reduction[J]. Journal of Environmental Management, 2019, 239: 17-22.
    [61]
    YAMAGUCHI A, AKIHO H, ITO S. Mercury oxidation by copper oxides in combustion flue gases[J]. Powder Technology, 2008, 180(1/2): 222-226.
    [62]
    MEI Z, SHEN Z, ZHAO Q, et al. Removing and recovering gas-phase elemental mercury by CuxCo3-xO4 (0.75≤x≤2.25) in the presence of sulphur compounds[J]. Chemosphere, 2008, 70(8): 1399-1404.
    [63]
    SRIRAM V, LI C, LIU Z, et al. Reaction kinetic study of elemental mercury vapor oxidation with CuCl2[J]. Chemical Engineering Journal, 2018, 343: 244-257.
    [64]
    KONG F, QIU J, LIU H, et al. Catalytic oxidation of gas-phase elemental mercury by nano-Fe2O3[J]. Journal of Environmental Sciences, 2011, 23(4): 699-704.
    [65]
    WANG D, YAO Q, LIU S, et al. Effect of support on simultaneous removal of NO and Hg0 over Cu and Fe catalysts[J]. Journal of the Energy Institute, 2019, 92(6): 1852-1863.
    [66]
    LI H, WU C Y, LI Y, et al. Impact of SO2 on elemental mercury oxidation over CeO2-TiO2 catalyst[J]. Chemical Engineering Journal, 2013, 219: 319-326.
    [67]
    LI H, WU C Y, LI Y, et al. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas[J]. Environmental Science & Technology, 2011, 45(17): 7394-7400.
    [68]
    CHANG H, WU Q, ZHANG T, et al. Design strategies for CeO2-MoO3 catalysts for deNOx and Hg0 oxidation in the presence of HCl: the significance of the surface acid-base properties[J]. Environmental Science & Technology, 2015, 49(20): 12388-12394.
    [69]
    WANG Y, SHEN B, HE C, et al. Simultaneous removal of NO and Hg0 from flue gas over Mn-Ce/Ti-PILCs[J]. Environmental Science & Technology, 2015, 49(15): 9355-9363.
    [70]
    CHEN C, JIA W, LIU S, et al. Simultaneous NO removal and Hg0 oxidation over CuO doped V2O5-WO3/TiO2 catalysts in simulated coal-fired flue gas[J]. Energy & Fuels, 2018, 32(6): 7025-7034.
    [71]
    MEI J, SUN P, XIAO X, et al. Influence mechanism of the compositions in coal-fired flue gas on Hg0 oxidation over commercial SCR catalyst[J]. Journal of Industrial and Engineering Chemistry, 2019, 75: 130-137.
    [72]
    SHIN D, KIM M H, HAN J W. Structure-activity relationship of VOx/TiO2 catalysts for mercury oxidation: a DFT study[J]. Applied Surface Science, 2021, 552: 149462.
    [73]
    YANG Y, XU W, WANG J, et al. New insight into simultaneous removal of NO and Hg0 on CeO2-modified V2O5/TiO2 catalyst: a new modification strategy[J]. Fuel, 2019, 249: 178-187.
    [74]
    LIU R, XU W, TONG L, et al. Mechanism of Hg0 oxidation in the presence of HCl over a commercial V2O5-WO3/TiO2 SCR catalyst[J]. Journal of Environmental Sciences, 2015, 36: 76-83.
    [75]
    ZHAO H, EZEH C I, YIN S, et al. MoO3-adjusted δ-MnO2 nanosheet for catalytic oxidation of Hg0 to Hg2+[J]. Applied Catalysis B: Environmental, 2020, 263: 117829.
    [76]
    ZHAO L, LI C, LI S, et al. Simultaneous removal of elemental mercury and NO in simulated flue gas over V2O5/ZrO2-CeO2 catalyst[J]. Applied Catalysis B: Environmental, 2016, 198: 420-430.
    [77]
    LI C, BREWE D, LEE J Y. Effects of impregnation sequence for Mo-modified V-based SCR catalyst on simultaneous Hg0 oxidation and NO reduction[J]. Applied Catalysis B: Environmental, 2020, 270: 118854.
    [78]
    SHAN W, YU Y, ZHANG Y, et al. Theory and practice of metal oxide catalyst design for the selective catalytic reduction of NO with NH3[J]. Catalysis Today, 2021, 376: 292-301.
    [79]
    SHI J, CHEN J, WANG J, et al. Vanadium-density-dependent reactivity for simultaneous removal of NOx and Hg0 over V2O5/TiO2 catalyst[J]. Fuel, 2023, 332: 126189.
    [80]
    LI C, SRIRAM V, LEE J Y. A kinetic study of Hg0 oxidation over Mo-promoted V-based SCR catalyst[J]. Chemical Engineering Journal, 2022, 427: 131864.
    [81]
    YEO W, SHIN D, KIM M H, et al. Change in the electronic environment of the VOx active center via support modification to enhance Hg oxidation activity[J]. ACS Catalysis, 2023, 13: 3775-3787.
    [82]
    SU J, YANG J, ZHANG M, et al. Improvement mechanism of Ru species on Hg0 oxidation reactivity over V2O5/TiO2 catalyst: a density functional theory study[J]. Chemical Engineering Science, 2023, 274: 118689.
    [83]
    ZHAO L, LI C, ZHANG J, et al. Promotional effect of CeO2 modified support on V2O5-WO3/TiO2 catalyst for elemental mercury oxidation in simulated coal-fired flue gas[J]. Fuel, 2015, 153: 361-369.
    [84]
    ZHAO L, LI C, LI S, et al. Simultaneous removal of Hg0 and NO in simulated flue gas on transition metal oxide M' (M'=Fe2O3, MnO2, and WO3) doping on V2O5/ZrO2-CeO2 catalysts[J]. Applied Surface Science, 2019, 483: 260-269.
    [85]
    WANG H, WANG B, SUN Q, et al. New insights into the promotional effects of Cu and Fe over V2O5-WO3/TiO2 NH3-SCR catalysts towards oxidation of Hg0[J]. Catalysis Communications, 2017, 100: 169-172.
    [86]
    CHEN C, JIA W, LIU S, et al. Catalytic performance of CuCl2-modified V2O5-WO3/TiO2 catalyst for Hg0 oxidation in simulated flue gas[J]. Korean Journal of Chemical Engineering, 2018, 35(3): 637-644.
    [87]
    ZHAO L, HE Q S, LI L, et al. Research on the catalytic oxidation of Hg0 by modified SCR catalysts[J]. Journal of Fuel Chemistry and Technology, 2015, 43(5): 628-634.
    [88]
    杨子文, 佟莉, 左朋莱, 等. 不同烟气组分对Cu2O改性V2O5-MoO3/TiO2脱硝催化剂汞氧化性能的影响[J]. 环境工程学报, 2022, 16(9): 2911-2920.
    [89]
    SHI J, WANG Z, MI J, et al. To be support or promoter: the mode of introducing ceria into commercial V2O5/TiO2 catalyst for enhanced Hg0 oxidation[J]. Journal of Hazardous Materials, 2023, 454: 131489.
    [90]
    LIU R, XU W, TONG L, et al. Role of NO in Hg0 oxidation over a commercial selective catalytic reduction catalyst V2O5-WO3/TiO2[J]. Journal of Environmental Sciences, 2015, 38: 126-132.
    [91]
    WANG Z, LIU J, ZHANG B, et al. Mechanism of heterogeneous mercury oxidation by HBr over V2O5/TiO2 catalyst[J]. Environmental Science & Technology, 2016, 50(10): 5398-5404.
    [92]
    CHIU C H, HSI H C, LIN HP, et al. Effects of properties of manganese oxide-impregnated catalysts and flue gas condition on multipollutant control of Hg0 and NO[J]. Journal of Hazardous Materials, 2015, 291: 1-8.
    [93]
    YANG J, SU J, CHEN L, et al. Mercury removal using various modified V/Ti-based SCR catalysts: a review[J]. Journal of Hazardous Materials, 2022, 436: 129115.
    [94]
    SUAREZ NEGREIRA A, WILCOX J. DFT study of Hg oxidation across vanadia-titania SCR catalyst under flue gas conditions[J]. The Journal of Physical Chemistry C, 2013, 117(4): 1761-1772.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (16) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return