Citation: | SONG Yuru, SUN Yunan, ZHANG Hongnan, CHEN Guanyi, DAN Zeng, CHENG Zhanjun, YAN Beibei. INCINERATION CHARACTERISTICS AND KINETICS OF PHOTOCURED 3D PRINTING WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 292-300. doi: 10.13205/j.hjgc.202409029 |
[1] |
赵光华, 刘志涛, 李耀棠. 光固化3D打印:原理、技术、应用及新进展[J]. 机电工程技术, 2020, 49(8): 1-6
,65.
|
[2] |
丁云雨. 3D打印用光敏树脂的制备及膨胀单体改性光敏树脂[D]. 青岛:青岛科技大学, 2016.
|
[3] |
ROGERS H, BARICZ N, PAWAR K S. 3D printing services: classification, supply chain implications, and research agenda[J]. International Journal of Physical Distribution & Logistics Management, 2016, 46(10):1-22.
|
[4] |
PAGAC M, HAJNYS J, MA Q P, et al. A review of vat photopolymerization technology: materials, applications, challenges, and future trends of 3D printing[J]. Polymers, 2021, 13(4):598.
|
[5] |
QUAN H, ZHANG T, XU H, et al. Photo-curing 3D printing technique and its challenges[J]. Bioactive Materials, 2020, 5(1):5.
|
[6] |
BAGHERI A, JIN J Y. Photopolymerization in 3D Printing[J]. ACS Applied Polymer Materials, 2019, 1(4): 593-611.
|
[7] |
HU Y, SHANG Q Q, BO C Y, et al. Synthesis and properties of UV-curable polyfunctional polyurethane acrylate resins from cardanol[J]. ACS omega, 2019, 4(7):12505-12511.
|
[8] |
VALLEY D S. 美国防部首份《增材制造战略》解析[Z]. 2021.
|
[9] |
国家市场监督管理总局. 市场监管总局关于印发《2021年度 实施企业标准"领跑者"重点领域》的公告[Z]. 2021.
|
[10] |
中国光固化材料行业发展趋势研究与未来投资预测报告(2023—2030年)[Z]. 2023.
|
[11] |
庄子洋. 光聚合3D打印可降解材料[D]. 北京:北京化工大学, 2019.
|
[12] |
MAINES E M, PORWAL M K, ELLISON C J, et al. Sustainable advances in SLA/DLP 3D printing materials and processes[J]. Green Chemistry, 2021, 23(18): 6863-6897.
|
[13] |
MACDONALD N P, ZHU F, HALL C J, et al. Assessment of biocompatibility of 3D printed photopolymers using zebrafish embryo toxicity assays[J]. Lab on a Chip, 2016, 16(2): 291-297.
|
[14] |
FERRAZ M, HENNING H H W, COSTA P F, et al. Potential health and environmental risks of three-dimensional engineered polymers[J]. Environmental Science & Technology Letters, 2018, 5(2): 80-85.
|
[15] |
WALPITAGAMA M, CARVE M, DOUEK A M, et al. Additives migrating from 3D-printed plastic induce developmental toxicity and neuro-behavioural alterations in early life zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2019: 213.
|
[16] |
LIU R Z, LIN Y F, HU F B, et al. Observation of emerging photoinitiator additives in household environment and sewage sludge in china[J]. Environmental Science & Technology, 2016, 50(1): 97-104.
|
[17] |
GUERRA A J, LARA P H, BECKER M L, et al. Photopolymerizable resins for 3D-Printing solid-cured tissue engineered implants[J]. Current Drug Targets, 2019, 20(8): 823-838.
|
[18] |
Global Waste Management Outlook 2024[Z]. 2023.
|
[19] |
切断根源:全世界如何终结塑料污染,创造循环经济[Z]. 2023.
|
[20] |
张闳楠, 孙昱楠, 宋玉茹, 等. 光固化3D打印废塑料来源、处置技术和环境影响[J]. 环境科学, 2023, 44(10):5870-5878.
|
[21] |
ZHANG F, ZHAO Y T, WANG D D, et al. Current technologies for plastic waste treatment: a review[J]. Journal of Cleaner Production, 2021: 282(1):124523.1-124523.29.
|
[22] |
SUN Y N, ZHANG H N, ZHANG F, et al. Pyrolysis properties and kinetics of photocured waste from photopolymerization-based 3D printing: a TG-FTIR/GC-MS study[J]. Waste Management, 2022, 150: 151-160.
|
[23] |
JIAO T T, FAN H L, LIU S J, et al. A review on nitrogen transformation and conversion during coal pyrolysis and combustion based on quantum chemical calculation and experimental study[J]. Chemical Engineering Journal, 2021, 35: 107-123.
|
[24] |
ZHOU H, MENG A H, LONG Y Q, et al. An overview of characteristics of municipal solid waste fuel in China: physical, chemical composition and heating value[J]. Renewable and Sustainable Energy Reviews, 2014: 107-122.
|
[25] |
CHEN G Y, HE S R, CHENG Z J, et al. Comparison of kinetic analysis methods in thermal decomposition of cattle manure by thermogravimetric analysis[J]. Bioresour Technology, 2017, 243: 69-77.
|
[26] |
LIANG B, HU J H, YUAN P, et al. Kinetics of the pyrolysis process of phthalonitrile resin[J]. Thermochim Acta, 2019, 672, 133-141.
|
[27] |
VYAZOYKIN S, BURNHAM A K, CRIADO J M, et al. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochim Acta, 2011, 520 (1/2): 1-19.
|
[28] |
SINGH R K, RUJ B, SADHUKHAN A K, et al. Thermal degradation of waste plastics under non-sweeping atmosphere: part 2: effect of process temperature on product characteristics and their future applications[J]. Journal of Environmental Management, 2020, 261, 110112.
|
[29] |
CHENG Q K, ZHENG Y, WANG T, et al. Yellow-resistant photosensitive resin for digital light processing 3D printing[J]. Journal of Applied Polymer Science, 2020, 137(7/8):48369.
|
[30] |
李晓娜, 潘超, 宋洋等. 典型塑料与生物质废弃物的共热解技术及高值化利用[J]. 环境科学研究, 2023, 36(9):1765-1778.
|
[31] |
NING L, CHEN J, SUN J K, et al. Preparation and properties of 3D printing light-curable resin modified with hyperbranched polysiloxane[J]. ACS Omega,2021, 6 (37): 23683-23690.
|
[32] |
JIANG Y, ZONG P J, MING X, et al. High-temperature fast pyrolysis of coal: an applied basic research using thermal gravimetric analyzer and the downer reactor[J]. Energy, 2021, 223, 119977.
|
[33] |
FANG S W, YU Z S, LIN Y S, et al. Thermogravimetric analysis of the co-pyrolysis of paper sludge and municipal solid waste[J]. Energy Conversion and Management, 2015, 101:626-631.
|
[34] |
ZHAI M, GUO L, ZHANG Y, et al. Kinetic parameters of biomass pyrolysis by TGA[J]. Bioresources, 2016, 11 (4):8548-8557.
|
[35] |
ALAM M, BHAVANAM A, JANA A, et al. Co-pyrolysis of bamboo sawdust and plastic: synergistic effects and kinetics[J]. Renewable Energy, 2020, 149: 1133-1145.
|
[36] |
朱亮,刘凤花,李占勇等. PS塑料的热解动力学特性[J].天津科技大学学报,2009,24(4):37-39.
|
[37] |
YOUSEF S, EIMONTAS J, STRIUGAS N, et al. Pyrolysis kinetic behavior and TG-FTIR-GC-MS analysis of metallised food packaging plastics[J]. Fuel, 2020, 282, 118737.
|
[38] |
EIMONTAS J, STRIUGAS N, ABDELNABY M A, et al. Catalytic pyrolysis kinetic behavior and TG-FTIR-GC-MS analysis of metallized food packaging plastics with different concentrations of ZSM-5 zeolite catalyst[J]. Polymers, 2021, 13 (5): 702.
|
[39] |
YAO Z L, MA X Q, WU Z D, et al. TGA-FTIR analysis of co-pyrolysis characteristics of hydrochar and paper sludge[J]. Journal of Analytical and Applied Pyrolysis, 2017, 123: 40-48.
|
[40] |
TANG X, CHEN X I, HE Y, EYRENDILEK F, et al. Co-pyrolytic performances, mechanisms, gases, oils, and chars of textile dyeing sludge and waste shared bike tires under varying conditions[J]. Chemical Engineering Journal, 2022, 428: 131053.
|
[41] |
MA Z Q, CHEN D Y, GU J, et al. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods[J]. Energy Conversion and Management, 2015, 89: 251-259.
|