Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HE Yuan-pu, FAN Hai-tao, LIU Guo-hua, QI Lu, XU Xiang-long, SHAO Yu-ting, WANG Hong-chen. STATUS AND TREND OF AERATION CONTROL STRATEGY DURING BIOLOGICAL WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 34-41,121. doi: 10.13205/j.hjgc.202106006
Citation: ZHU Lixuan, WANG Xianghui, XIN Shaofei, DOU Xiaomin, XU Kangning. TECHNICAL STRATEGY AND AN ENGINEERING CASE ON ULTRA-LOW DISCHARGE OF HIGH FLUORIDE WASTEWATER RARE EARTH INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 11-16. doi: 10.13205/j.hjgc.202410002

TECHNICAL STRATEGY AND AN ENGINEERING CASE ON ULTRA-LOW DISCHARGE OF HIGH FLUORIDE WASTEWATER RARE EARTH INDUSTRY

doi: 10.13205/j.hjgc.202410002
  • Received Date: 2023-03-06
    Available Online: 2024-11-30
  • Aiming at the problem of ultra-low fluorine discharge from alkaline high-fluorine wastewater produced by a rare earth chemical plant, the technical scheme and condition optimization of fluorine removal was studied. The process scheme was proposed, and an engineering design was carried out. The results showed that the calcium fluoride chemical precipitation method was more suitable for removing fluoride from high-fluorine wastewater. The increase in the calcium-fluorine ratio helped improve the effect of chemical precipitation. However, excessive CaCl2 dosing (Ca∶F>0.7) would lead to a sharp increase in sludge production, while coagulation sedimentation was more suitable for further deep fluoride removal of low-fluorine wastewater (<20 mg F/L). When the molar ratio of aluminum to fluorine was 13.5, and the initial pH was 6, the fluorine concentration of the effluent could be stabilized at about 0.37 mg/L. The ultra-low discharge process plan for high-fluorine wastewater was proposed, and the engineering design was carried out. The high-calcium acid wastewater produced by the enterprise was used to pretreat the alkaline high-fluoride wastewater, and then the chemical precipitation-coagulation precipitation coupling process was used to stabilize the fluorine concentration of the effluent, to meet the limiting value of the emission standard of 1.5 mg/L below.
  • [1]
    冯俊生. 稀土冶炼酸性废水除氟试验研究[D]. 西安: 西安建筑科技大学, 2005.
    [2]
    云敏瑞,云鹏,高晓玲. 包头市空气中氟化物污染变化趋势与治理效果分析[J]. 内蒙古环境保护, 2005, 3(4): 17-19.
    [3]
    中华人民共和国环境保护部. 稀土工业污染物排放标准: GB 26451—2011[S]. 北京, 2011.
    [4]
    北京市环境保护局. 水污染物综合排放标准: DB 11/307—2013[S]. 北京, 2013.
    [5]
    张希祥,王煤,段德智. 氧化钙粉末处理高浓度含氟废水的实验研究[J]. 四川大学学报, 2001, 33(6): 111-113.
    [6]
    鞠佳伟,高玉萍,何赞,等. pH对铝盐絮凝剂形态分布与混凝除氟性能的影响[J]. 环境工程学报, 2015, 9(6): 2563-2568.
    [7]
    王玉坤,王翠华,顾宝群,等. 电渗析与反渗透技术在沧州农村分质供水中的除盐降氟效果分析[J]. 南水北调与水利科技, 2010, 8(4): 48-52.
    [8]
    蒋颖. 化学沉淀-吸附复合工艺处理含氟选矿废水的研究[D]. 绵阳: 西南科技大学, 2020.
    [9]
    刘旭. 沉淀-吸附组合工艺处理工业含氟废水的研究[D]. 北京: 北京化工大学, 2022.
    [10]
    娄金生,刘金香,刘海波. 化学混凝沉淀—吸附法处理含氟废水研究[J]. 南华大学学报(自然科学版), 2009, 23(4): 102-106.
    [11]
    上官平. 氟化钙反应结晶热力学和动力学研究[D]. 南昌: 南昌航空大学, 2016.
    [12]
    PARTHASARATHY N, BUFFLE J, HAERDI W. Combined use of calcium salts and polymeric aluminium hydroxide for defluoridation of waste waters[J]. Water Research, 1986, 20(4): 443-448.
    [13]
    TOYODA A, TAIRA T. A new method for treating fluorine wastewater to reduce sludge and running costs[J]. IEEE Transactions on Semiconductor Manufacturing, 2000, 13(3): 305-309.
    [14]
    杜敏,杨道武,霍忠堂,等. 氢氧化钙清液加氯化钙处理酸性高浓度含氟废水[J]. 北方环境, 2013, 25(12): 119-121.
    [15]
    CHEN D H, ZHAO M Y, TAO X Y, et al. Exploration and optimisation of high-salt wastewater defluorination process[J]. Water, 2022, 14(23): 3974.
    [16]
    余文娟,岳秀萍. 钙盐沉淀法处理氟微量超标饮用水[J]. 科学之友, 2012, 12(8): 135-136.
    [17]
    彭丙瑞. 化学沉淀-混凝法处理电子工业含砷氟废水试验研究[D]. 北京: 北京林业大学, 2019.
    [18]
    杨春,刘本洪,刘蕾,等. 普通硅酸盐水泥和钙盐对氟污染地表水的除氟效果[J]. 环境工程学报, 2022, 16(9): 2838-2849.
    [19]
    GUO F Q, JIA X P, LIANG S, et al. Development of biochar-based nanocatalysts for tar cracking/reforming during biomass pyrolysis and gasification[J]. Bioresource Technology, 2020, 298(C): 122263.
    [20]
    朱萍,夏斌,刘强,等. 氟化钙污泥提纯及资源化利用的研究现状[J]. 中国资源综合利用, 2022, 40(10): 104-111.
    [21]
    赖星任,张龙辉,周加坤,等. 钨酸钠浓料铝盐除氟工艺探讨[J]. 中国冶金, 2021, 31(4): 118-121.
    [22]
    GONG W X, QU J H, LIU R P, et al. Effect of aluminum fluoride complexation on fluoride removal by coagulation[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2012, 395(1): 88-93.
  • Relative Articles

    [1]HE Guofu, CHEN Min, GU Jiayan, CAI Jingli, XIE Liping, XUE Wenjin, HU Yingying. Research progress of carbon capture technology in sewage treatment based on CiteSpace metrological analysis[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 70-79. doi: 10.13205/j.hjgc.202501008
    [2]WANG Jianhui, LIAO Wanshan, LI Huimin, FENG Dong, GUO Zhiwei, Mohamed S. Mahmoud, ZHANG Bing, GAO Xu, SHEN Yu, CHEN Youpeng. A DATA ENHANCEMENT METHOD FOR SUPPORTING INTELLIGENT MANAGEMENT OF WWTPs UNDER DATA DEFICIENCY CONDITIONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 153-159. doi: 10.13205/j.hjgc.202406018
    [3]WANG Qinyi, SHENG Yangyue, SONG Ningning, ZHANG Junqi, ZENG Songxi, QIAN Xiaoyong, QIU Kaipei, LIU Qizhen. PROGRESS OF CH4 AND N2O MONITORING IN FULL-SCALE WASTEWATER TREATMENT PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 51-60. doi: 10.13205/j.hjgc.202310008
    [4]YAN Lu, CHEN Yun, GUO Yuanhui, HOU Maoxiang, LIU Zuohui. RESEARCH PROGRESS OF SELF-ACTUATED MICRO/NANOROBOTS IN WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 93-103,114. doi: 10.13205/j.hjgc.202311016
    [5]LU Huimin, CHEN Zhuo, NI Xinye, WU Yinhu, HU Hongying. ANALYSIS OF WATER RECLAMATION AND REUSE IN JAPAN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 237-242. doi: 10.13205/j.hjgc.202303032
    [6]ZHANG Jiao, XIAO Kang, LIANG Shuai, HUANG Xia. MEMBRANE TECHNOLOGIES FOR MUNICIPAL WASTEWATER TREATMENT AND RECLAMATION IN CHINA:APPLICATION AND CHALLENGES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 1-6,153. doi: 10.13205/j.hjgc.202203001
    [7]WU Baimiao, ZHANG Yimei, LI Shuai, GUO Wenjin, GUO Xiaoqian, WANG Senyao, LIANG Xi, GENG Xuewen. COMPREHENSIVE IMPACT ASSESSMENT ON CARBON NEUTRALIZATION OF WASTEWATER TREATMENT PLANTS BASED ON HYBRID LCA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 130-137. doi: 10.13205/j.hjgc.202206017
    [8]GAO Song, QIU Yong, MENG Fanlin, ZHANG Xiaying, PAN Deli, WANG Kaijun. STATE-OF-ART AND TRENDS OF DATA ANALYTICAL TECHNIQUES FOR WASTEWATER TREATMENT PROCESSES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 194-203. doi: 10.13205/j.hjgc.202206025
    [9]XU Runze, CAO Jiashun, FANG Fang. RESEARCH PROGRESS ON N2O RECYCLING AND DATA-DRIVEN MODELING IN WASTEWATER TREATMENT PROCESSES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 107-115. doi: 10.13205/j.hjgc.202206014
    [10]WU Yuxing, WANG Xiaodong, CHEN Ning, YANG Benliang, YAN Tingliang, HUANG Qing. FULL-SCALE STUDY OF AN INTELLIGENT CARBON DOSING CONTROL SYSTEM IN A TYPICAL URBAN WASTEWATER TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 212-218,271. doi: 10.13205/j.hjgc.202206027
    [11]RUI Dongni, MA Yanyan, YE Lin. APPLICATION OF MACHINE LEARNING METHODS IN WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 145-153. doi: 10.13205/j.hjgc.202206019
    [12]WANG Qian, DENG Qiaosi, WU Wei, AI Fangyi, DU Junli, ZHANG Yuanhe, BAI Fan, LEI Mingming, QU Ruihua, GAN Yang, DU Weiwei. OPERATION DIAGNOSIS AND CARBON SOURCE OPTIMIZATION OF YONGCHUAN WASTEWATER TREATMENT PLANT USING PROCESS MODELING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 219-225. doi: 10.13205/j.hjgc.202206028
    [13]YIN Fengjun, XU Zeyu, LIU Hong. THINKING ON CONSTRUCTING AN INTELLIGENT CONTROL SCHEME OF WASTEWATER TREATMENT BASED ON THE COMBINATION OF MECHANISM AND DATA-DRIVEN MODELS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 138-144. doi: 10.13205/j.hjgc.202206018
    [14]JING Yu-shu, MOU Run-zhi, JIANG Yi-ming, LIU Zhang-qing, YANG Yan-dong. REDUCING ENERGY AND CHEMICALS CONSUMPTION OF WASTEWATER TREATMENT PLANTS BY ACCURATE AERATION CONTROL: A CASE STUDY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 141-145,165. doi: 10.13205/j.hjgc.202205020
    [15]XU Yi, YANG Shi-hong, YOU Guo-xiang, HOU Jun. REVIEW OF THE ENVIRONMENTAL BEHAVIORS AND TOXICITY EFFECT OF NANOCERIA IN WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 7-13,75. doi: 10.13205/j.hjgc.202109002
    [16]LI Rui-cheng. ANALYSIS ON DESIGN CHARACTERISTICS OF A LARGE-SCALE SEMI-UNDERGROUND WASTEWATER TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 109-115. doi: 10.13205/j.hjgc.202007017
    [17]LI Yi-huan, XI Lei-lei, ZHONG Yi-jie, HU Yu, ZHANG Hui-min, WU Zhen-yu. OPERATION EFFECT AND CONTROL SCHEME OPTIMIZATION OF AN INVERTED A2/O PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 76-81,26. doi: 10.13205/j.hjgc.202003013
    [18]ZHANG Shuang, YANG Qing, LIU Xiu-hong, CUI Bin, LIU Zhi-bin. RESEARCH PROGRASS ON STRUCTURAL CHARACTERISTICS AND APPLICATION OF EXPERT SYSTEM IN WASTEWATER TREATMENT PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 25-31,99. doi: 10.13205/j.hjgc.202007004
    [19]Yang Bei Bai Xue Gu Haixin, . THE PREPARATION AND APPLICATION OF MAGNETIC ABSORBENT IN WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 25-29. doi: 10.13205/j.hjgc.201504006
  • Cited by

    Periodical cited type(12)

    1. 肖梅. 基于神经网络的污水处理鼓风机曝气控制方法. 自动化与仪器仪表. 2025(02): 116-120 .
    2. 阳鑫,张劲,刘志. 改进粒子群模糊PID算法对污水处理曝气控制的优化. 科学技术与工程. 2025(07): 3064-3070 .
    3. 张新政,邓梓萱,张涛,胡勇,陈荣,李玉友,李大鹏,潘杨,孔哲. 升流式厌氧污泥床处理二甲基甲酰胺废水研究. 能源环境保护. 2024(01): 159-166 .
    4. 赵秉举. 基于人工智能的微型生活污水处理过程控制与优化. 智能建筑与智慧城市. 2024(03): 174-176 .
    5. 阳鑫,张劲,冯学高,刘志. 基于CiteSpace的中国污水处理智能控制领域的研究热点与趋势分析. 四川环境. 2024(02): 132-138 .
    6. 李云辉,张振健,陈柳宇,张鸣,蒋路漫,周振. 夏冬两季AAO工艺微孔曝气系统性能测定与评价. 净水技术. 2024(04): 104-113 .
    7. 何新忠. 新型曝气控制系统和模型在污水处理中的应用. 清洗世界. 2024(05): 45-47 .
    8. 张新政,范煜秦,薛意,张涛,陈荣,李大鹏,潘杨,李玉友,孔哲. 厌氧膜生物反应器处理酰胺工业废水的碳中和潜力——能源回收与碳减排. 环境工程学报. 2024(09): 2637-2646 .
    9. 孙猛,杨佳林,肖彭誉,李金珊,王启镔,刘刚,霍明昕. 城市污水低碳和资源化技术进展与新趋势. 环境工程学报. 2023(06): 1748-1760 .
    10. 于怀星,袁丁,何梓灏. 短程精准曝气智能控制系统在污水处理厂中的应用. 环境工程. 2023(11): 165-171 . 本站查看
    11. 王丽,刘丽红,陈明月,石益广,王飒,刘钢. 污水处理智能控制技术及其在精准曝气中的应用. 净水技术. 2022(S1): 1-7+19 .
    12. 朱明君,任亮,杨忠莲,徐连红,仲雨叶,朱光灿. 小型一体化农村生活污水处理设施进水负荷特征与运行优化研究. 低碳世界. 2022(07): 10-14 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.1 %FULLTEXT: 8.1 %META: 88.1 %META: 88.1 %PDF: 3.8 %PDF: 3.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.8 %其他: 11.8 %其他: 0.7 %其他: 0.7 %Canton: 0.1 %Canton: 0.1 %China: 2.8 %China: 2.8 %Edinburg: 0.1 %Edinburg: 0.1 %Ottawa: 0.1 %Ottawa: 0.1 %Rochester: 0.1 %Rochester: 0.1 %San Lorenzo: 0.2 %San Lorenzo: 0.2 %Viet Nam: 0.2 %Viet Nam: 0.2 %[]: 0.2 %[]: 0.2 %上海: 4.2 %上海: 4.2 %东莞: 5.0 %东莞: 5.0 %东营: 0.1 %东营: 0.1 %临汾: 0.1 %临汾: 0.1 %九江: 0.1 %九江: 0.1 %信阳: 0.1 %信阳: 0.1 %兰州: 0.1 %兰州: 0.1 %加利福尼亚州: 0.4 %加利福尼亚州: 0.4 %北京: 5.8 %北京: 5.8 %北海: 0.4 %北海: 0.4 %匹兹堡: 0.1 %匹兹堡: 0.1 %南京: 2.2 %南京: 2.2 %南昌: 0.4 %南昌: 0.4 %厦门: 0.2 %厦门: 0.2 %台州: 0.1 %台州: 0.1 %合肥: 0.1 %合肥: 0.1 %周口: 0.1 %周口: 0.1 %呼和浩特: 0.4 %呼和浩特: 0.4 %哈密尔顿: 0.1 %哈密尔顿: 0.1 %哈尔滨: 0.2 %哈尔滨: 0.2 %嘉兴: 0.2 %嘉兴: 0.2 %大连: 0.2 %大连: 0.2 %天津: 1.1 %天津: 1.1 %太原: 1.0 %太原: 1.0 %威海: 0.1 %威海: 0.1 %宁波: 0.4 %宁波: 0.4 %安康: 0.2 %安康: 0.2 %宜春: 0.1 %宜春: 0.1 %宣城: 1.5 %宣城: 1.5 %密蘇里城: 1.3 %密蘇里城: 1.3 %崇左: 0.1 %崇左: 0.1 %巴音郭楞: 0.1 %巴音郭楞: 0.1 %常州: 0.9 %常州: 0.9 %平顶山: 0.1 %平顶山: 0.1 %广州: 3.8 %广州: 3.8 %廊坊: 0.4 %廊坊: 0.4 %张家口: 1.1 %张家口: 1.1 %徐州: 0.1 %徐州: 0.1 %恩施: 0.1 %恩施: 0.1 %成都: 1.6 %成都: 1.6 %扬州: 0.1 %扬州: 0.1 %拉斯维加斯: 0.1 %拉斯维加斯: 0.1 %无锡: 0.4 %无锡: 0.4 %日喀则: 0.1 %日喀则: 0.1 %日照: 0.1 %日照: 0.1 %昆明: 0.5 %昆明: 0.5 %晋城: 0.2 %晋城: 0.2 %朝阳: 0.1 %朝阳: 0.1 %杭州: 2.6 %杭州: 2.6 %株洲: 0.1 %株洲: 0.1 %格兰特县: 0.1 %格兰特县: 0.1 %檀香山: 0.2 %檀香山: 0.2 %武汉: 3.8 %武汉: 3.8 %江门: 0.4 %江门: 0.4 %沈阳: 0.2 %沈阳: 0.2 %泉州: 0.2 %泉州: 0.2 %济南: 0.7 %济南: 0.7 %济源: 0.2 %济源: 0.2 %深圳: 0.7 %深圳: 0.7 %湖州: 0.5 %湖州: 0.5 %湘潭: 0.4 %湘潭: 0.4 %滨州: 0.2 %滨州: 0.2 %漯河: 0.5 %漯河: 0.5 %潍坊: 0.4 %潍坊: 0.4 %烟台: 0.1 %烟台: 0.1 %玉溪: 0.1 %玉溪: 0.1 %珠海: 0.1 %珠海: 0.1 %百色: 0.4 %百色: 0.4 %盐城: 1.2 %盐城: 1.2 %石家庄: 0.6 %石家庄: 0.6 %福州: 0.4 %福州: 0.4 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.1 %绍兴: 0.1 %肇庆: 0.1 %肇庆: 0.1 %芒廷维尤: 8.2 %芒廷维尤: 8.2 %芜湖: 0.5 %芜湖: 0.5 %芝加哥: 0.2 %芝加哥: 0.2 %苏克: 0.1 %苏克: 0.1 %苏州: 0.9 %苏州: 0.9 %蚌埠: 0.4 %蚌埠: 0.4 %衢州: 0.7 %衢州: 0.7 %西宁: 10.4 %西宁: 10.4 %西安: 0.5 %西安: 0.5 %贵阳: 0.4 %贵阳: 0.4 %达州: 0.1 %达州: 0.1 %运城: 1.2 %运城: 1.2 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.7 %郑州: 0.7 %都伯林: 0.2 %都伯林: 0.2 %重庆: 1.6 %重庆: 1.6 %镇江: 2.2 %镇江: 2.2 %长春: 0.1 %长春: 0.1 %长沙: 0.9 %长沙: 0.9 %长治: 0.1 %长治: 0.1 %阜阳: 0.1 %阜阳: 0.1 %阳泉: 0.5 %阳泉: 0.5 %阿克苏: 0.1 %阿克苏: 0.1 %青岛: 1.0 %青岛: 1.0 %韶关: 0.1 %韶关: 0.1 %香港: 0.1 %香港: 0.1 %马鞍山: 0.1 %马鞍山: 0.1 %其他其他CantonChinaEdinburgOttawaRochesterSan LorenzoViet Nam[]上海东莞东营临汾九江信阳兰州加利福尼亚州北京北海匹兹堡南京南昌厦门台州合肥周口呼和浩特哈密尔顿哈尔滨嘉兴大连天津太原威海宁波安康宜春宣城密蘇里城崇左巴音郭楞常州平顶山广州廊坊张家口徐州恩施成都扬州拉斯维加斯无锡日喀则日照昆明晋城朝阳杭州株洲格兰特县檀香山武汉江门沈阳泉州济南济源深圳湖州湘潭滨州漯河潍坊烟台玉溪珠海百色盐城石家庄福州秦皇岛纽约绍兴肇庆芒廷维尤芜湖芝加哥苏克苏州蚌埠衢州西宁西安贵阳达州运城遵义邯郸郑州都伯林重庆镇江长春长沙长治阜阳阳泉阿克苏青岛韶关香港马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (94) PDF downloads(6) Cited by(19)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return