Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Fangzhou, WEI Yanfeng, ZHU Fangfang, XIA Ziyuan, GOU Min, TANG Yueqin. ENRICHMENT AND STABILITY OF ENDOGENOUS MICROBIAL COMMUNITY IN CRUDE OIL PHASE OF RESERVOIR-PRODUCED FLUID[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 41-49. doi: 10.13205/j.hjgc.202410006
Citation: WANG Fangzhou, WEI Yanfeng, ZHU Fangfang, XIA Ziyuan, GOU Min, TANG Yueqin. ENRICHMENT AND STABILITY OF ENDOGENOUS MICROBIAL COMMUNITY IN CRUDE OIL PHASE OF RESERVOIR-PRODUCED FLUID[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 41-49. doi: 10.13205/j.hjgc.202410006

ENRICHMENT AND STABILITY OF ENDOGENOUS MICROBIAL COMMUNITY IN CRUDE OIL PHASE OF RESERVOIR-PRODUCED FLUID

doi: 10.13205/j.hjgc.202410006
  • Received Date: 2023-12-18
    Available Online: 2024-11-30
  • The crude oil phase of reservoir-produced fluid has been considered as an ideal environment for obtaining crude oil-degrading bacteria in recent years, but there is little research on microbial isolation from the crude oil phase. In this study, the microbial community structure in the aqueous-oil phase of the produced fluid from six oil wells located in the North China Oilfield was compared. Then, the endogenous community in the six crude oil phases was enriched, respectively. At the same time, the community succession in the process of enrichment was dynamically tracked. Finally, the response of the enriched communities to continuous disturbance of environmental factors was investigated. The results showed that the microbial diversity and richness in the crude oil phase were higher than those in the aqueous phase, and there were significant differences in the community structure between the two phases. The crude oil phases from well P1#, 92#, and 99# contained 111, 23, and 9 unique OTUs, respectively. After 10 generations of continuous enrichment, the crude oil degradation rates of enriched communities 15#, 92#, and P1# gradually increased and tended to be stable, and the maximum degradation rate was 81.9%, 71.5%, and 63.6%, respectively. The dominant bacteria in the community 15# mainly included Brevibacillus (89.3%), Novibacillus (8.0%), and Bacillus (1.5%), while Brevibacillus was the absolute dominant bacteria (with a relative abundance of 99%) in the community 92# and P1#. Under the multiple disturbances of temperature and oxygen, the microbial composition and abundance of community P1# changed. The dominant Brevibacillus was suppressed while the relative abundance of Paenibacillus and Aneurinibacillus increased, resulting in the accumulation of medium and long chain alkanes (C18 to C29). However, community 15# and 92# can maintain stable ability of alkane degradation. These results indicated that the crude oil phase of the produced liquid can act as a potential microbial source for exploring crude oil-degrading bacteria.
  • [1]
    TAO W Y, LIN J Z, WANG W D, et al. Biodegradation of aliphatic and polycyclic aromatic hydrocarbons by the thermophilic bioemulsifier-producing Aeribacillus pallidus strain SL-1[J].Ecotoxicol Environ Saf,2020,189:109994.
    [2]
    GAO P K, LI G Q, TIAN H M, et al. Differences in microbial community composition between injection and production water samples of water flooding petroleum reservoirs[J].Biogeosciences,2015,12:3403-3414.
    [3]
    XIAO M, SUN S S, ZHANG Z Z, et al. Analysis of bacterial diversity in two oil blocks from two low-permeability reservoirs with high salinities[J].Scientific Reports,2016,6:19600.
    [4]
    VOSKUHL L, AKBARI A, MVLLER H, et al. Indigenous microbial communities in heavy oil show a threshold response to salinity[J].FEMS Microbiol Ecol,2021,97:157.
    [5]
    MECKENSTOCK R U, von NETZER F, STUMPP C, et al. Oil biodegradation. Water droplets in oil are microhabitats for microbial life[J].Science,2014,345:673-676.
    [6]
    PANNEKENS M, KROLL L, MVLLER H, et al. Oil reservoirs, an exceptional habitat for microorganisms[J]. N Biotechnol,2019,49:1-9.
    [7]
    CAI M, NIE Y, CHI C Q, et al. Crude oil as a microbial seed bank with unexpected functional potentials[J]. Scientific Reports,2015,5:16057.
    [8]
    KRYACHKO Y, DONG X, SENSEN C W, et al. Compositions of microbial communities associated with oil and water in a mesothermic oil field[J].Antonie Van Leeuwenhoek,2012,101:493-506.
    [9]
    LIANG B, ZHANG K, WANG L Y, et al. Different diversity and distribution of archaeal community in the aqueous and oil phases of production fluid from high-temperature petroleum reservoirs[J].Front Microbiol,2018,9:841.
    [10]
    WEI Y F, WANG L, XIA Z Y, et al. Microbial communities in crude oil phase and filter-graded aqueous phase from a Daqing oilfield after polymer flooding[J]. J Appl Microbiol,2022,133:842-856.
    [11]
    LIU Y F, GALZERANI D D, MBADINGA S M, et al. Metabolic capability and in situ activity of microorganisms in an oil reservoir[J].Microbiome,2018,6:5.
    [12]
    WU Z L, LIN Z, SUN Z Y, et al. A comparative study of mesophilic and thermophilic anaerobic digestion of municipal sludge with high-solids content: reactor performance and microbial community[J].Bioresour Technol,2020,302:122851.
    [13]
    CHAILLAN F, Le FLōCHE A, BURY E, et al. Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms[J].Res Microbiol,2004,155:587-595.
    [14]
    GRIFFITHS R I, WHITELEY A S, O'DONNELL A G, et al. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition[J].Appl Environ Microbiol,2000,66:5488-5491.
    [15]
    李明星, 李红英, 刘鹏, 等. 苏里格气田典型区块采出水乳化特征及乳化影响因素分析[J].油田化学,2023,40:697-703.
    [16]
    SONG W F, WANG J W, YAN Y C, et al. Shifts of the indigenous microbial communities from reservoir production water in crude oil- and asphaltene-degrading microcosms[J].International Biodeterioration & Biodegradation,2018,132:18-29.
    [17]
    SHIBULAL B, AL-Bahry S N, AL-Wahaibi Y M, et al. Analysis of bacterial diversity in different heavy oil wells of a reservoir in south oman with alkaline pH[J].Scientifica,2018,21:9230143.
    [18]
    吴慧君, 宋权威, 郑瑾, 等. 微生物降解石油烃的功能基因研究进展[J].微生物学通报,2020,47(10):3355-3368.
    [19]
    王小通, 向龙斌,张艺馨. 辽河高凝油微生物采油菌剂研究及应用评价[J].岩性油气藏,2017,29(5):162-168.
    [20]
    SHIBULAL B, AL-BAHRY S N, AL-WAHAIBI Y M, et al. The potential of indigenous Paenibacillus ehimensis BS1 for recovering heavy crude oil by biotransformation to light fractions[J].PLoS One,2017,12:e0171432.
    [21]
    HUANG Y, LI L, YIN X, et al. Polycyclic aromatic hydrocarbon (PAH) biodegradation capacity revealed by a genome-function relationship approach[J].Environ Microbiome,2023,18:39.
    [22]
    TANG J, WANG Y Q, YANG G Q, et al. Complete genome sequence of the dissimilatory azo reducing thermophilic bacterium Novibacillus thermophiles SG-1[J].J Biotechnol,2018,284:6-10.
    [23]
    HAUSMANN B, KNORR K H, SCHRECK K, et al. Consortia of low-abundance bacteria drive sulfate reduction-dependent degradation of fermentation products in peat soil microcosms[J].ISME J,2016,10:2365-2375.
    [24]
    GAO P K, WANG H B, LI G X, et al. Low-abundance Dietzia inhabiting a water-flooding oil reservoir and the application potential for oil recovery[J].BioMed Research International,2019:2193453.
    [25]
    HU B, WANG M X, GENG S, et al. Metabolic exchange with non-alkane-consuming pseudomonas stutzeri slg510a3-8 improves n-alkane biodegradation by the alkane degrader Dietzia sp. Strain DQ12-45-1b[J]. Applied and Environmental Microbiology,2020,86:e02931-02919.
    [26]
    SAGHATELYAN A, MARGARYAN A, PANOSYAN H, et al. Microbial diversity of terrestrial geothermal springs in Armenia and Nagorno-karabakh: a review[J].Microorganisms,2021,9(7).
    [27]
    RICCARDI C, CALVANESE M, GHINI V, et al. Metabolic robustness to growth temperature of a cold-adapted marine bacterium[J].Msystems,2023,8:e01124-01122.
    [28]
    PENG C, WAN X, ZHANG J, et al. Bacterial diversity and competitors for degradation of hazardous oil refining waste under selective pressures of temperature and oxygen[J]. J Hazard Mater,2022,427:128201.
    [29]
    YANNARELL A C, STEPPE T F, PAERL H W. Disturbance and recovery of microbial community structure and function following Hurricane Frances[J].Environ Microbiol,2007,9:576-583.
    [30]
    SAN LEÓN D, NOGALES J. Toward merging bottom-up and top-down model-based designing of synthetic microbial communities[J].Curr Opin Microbiol,2022,69:102169.
    [31]
    GUDELJ I, KINNERSLEY M, RASHKOV P, et al. Stability of cross-feeding polymorphisms in microbial communities[J].PLoS Comput Biol,2016,12:e1005269.
  • Relative Articles

    [1]ZHOU Qi, HAN Peipei, HOU Yanan, HUANG Cong. CHANGES IN MICROBIAL COMMUNITY OF NITRIFYING SLUDGE UNDER LONG-TERM CARBON DISULFIDE STRESS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 51-57. doi: 10.13205/j.hjgc.202403006
    [2]LI Zishan, HU Zhiwen, MEI Chuang, BAI Jinjing, ZENG Yan, XIAO Rongbo, WANG Peng, HUANG Fei. EFFECT OF COMBINATION OF RICE STRAW BIOCHAR AND BACILLUS CEREUS ON TRANSFORMATION OF SOIL HEAVY METAL SPECIATIONS AND MICROBIAL COMMUNITY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 165-176. doi: 10.13205/j.hjgc.202410020
    [3]YU Hong, SHI Lingling. EFFECTS OF MICROPLASTICS ON MICROBIAL COMMUNITIES AND FUNCTIONAL GENES IN SOIL WITH DIFFERENT AGGREGATE-FRACTION LEVELS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 167-174. doi: 10.13205/j.hjgc.202402020
    [4]ZHAO Yong, HAO Guizhen, XU Li, XIONG Xiaoying, ZHANG Xuanmo, WANG Jiawei. ENHANCED NITROGEN REMOVAL BY AEROBIC GRANULAR SLUDGE AND EVOLUTION OF MICROBIAL COMMUNITY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 135-143. doi: 10.13205/j.hjgc.202407015
    [5]GE Xinyue, LIU Qidi, LIU Siyuan, HOU Jun, YOU Guoxiang. REVIEW OF ANTIBIOTIC DEGRADATION EFFICACY AND EVOLUTION MECHANISM OF ANTIBIOTIC RESISTANCE GENES IN ICPB REACTORS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 1-14. doi: 10.13205/j.hjgc.202407001
    [6]ZHENG Yuhan, SU Zhiguo, LI Feifei, YAO Pengcheng, WEN Donghui. IMPACTS OF LAND-BASED WASTEWATER DISCHARGE ON MICROBIAL COMMUNITY COMPOSITION AND CARBON METABOLISM IN COASTAL EFFLUENT-RECEIVING AREAS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 194-200. doi: 10.13205/j.hjgc.202309024
    [7]ZHANG Chi, SHA Hongjü, WANG Chao, LÜ Ze, HU Xiaomin. MICROBIAL COMMUNITY STRUCTURE ENHANCEMENT BY ELECTRIC FIELD AT ROOM TEMPERATURE AND HIGH NITROGEN LOAD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 39-44. doi: 10.13205/j.hjgc.202305006
    [8]XU Jinlan, TIAN Guiyong, SHI Qihang. ACCELERATION OF VARIOUS ALKANES BALANCED DEGRADATION BY SOIL MICROORGANISMS WITH FENTON PRE-OXIDATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 131-139. doi: 10.13205/j.hjgc.202302018
    [9]TAN Hui, LIN Hua, DING Na, SHI En-ze, GAN Shu-ping. CHARACTERIZATION OF RHIZOSPHERE ENVIRONMENT OF LEERSIA HEXANDRA SWARTZ UNDER CONTAMINATION OF Ni AND Cr[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 109-116. doi: 10.13205/j.hjgc.202205016
    [10]YAN Duosen, YANG Wen, LI Shanshan, JIAO Yan, ZHANG Guodong, CHEN Qinghua, LI Yun. EFFECT OF SULFAMETHOXAZOLE ON NITROGEN REMOVAL AND MICROBIAL COMMUNITY OF SEQUENCING BATCH BIOREACTORS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 15-23,70. doi: 10.13205/j.hjgc.202210003
    [11]CHEN Weidong, WEN Donghui. ADVANCES IN SPATIAL-TEMPORAL DISTRIBUTION AND ASSEMBLY MECHANISMS OF MICROBIAL COMMUNITY IN WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 1-13,39. doi: 10.13205/j.hjgc.202208001
    [12]LIU Bin, HE Jie, LI Xueyan. CHARACTERISTICS OF SIMULTANEOUS TREATMENT OF NITROGEN AND PHOSPHORUS IN PYRITE BIOFILTER AND ITS MICROBIAL COMMUNITY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 32-37,138. doi: 10.13205/j.hjgc.202203006
    [13]MA Dachao, DENG Xiushan, DENG Xiuquan, ZHANG Xuan, LIANG Zhengwu, FENG Qingge. PROCESS PROPERTIES AND MICROBIAL COMMUNITY SUCCESSION DURING THE STATICAL BIO-DRYING OF FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 106-111,133. doi: 10.13205/j.hjgc.202204015
    [14]XIE Mingde, FENG Mei, TANG Yiming, YI Xiaoying, LIU Dan. ANALYSIS ON MICROBIAL COMMUNITY STRUCTURES AND DIVERSITY IN AGED REFUSE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 42-46. doi: 10.13205/j.hjgc.202202007
    [15]HUANG Feng-lian, ZOU Xuan, CHEN Can, ZHONG Zhen-yu, LI Xiao-ming, WAN Yong, LIU Wan-rong. DEGRADATION OF ATRAZINE BY FERROUS ACTIVATED SODIUM HYPOCHLORITE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 160-165,172. doi: 10.13205/j.hjgc.202102026
    [16]GUO Yue-hong, WANG Jian-sheng, ZHANG Xue-hong, ZHANG Xing-feng, GAO Bo. EFFECTS OF HUMIC ACID ON CHROMIUM SPECIATION, MICROBIAL COMMUNITIES AND ENZYME ACTIVITIES IN RED SOIL TREATMENT SYSTEM PLANTED WITH LEERSIA HEXANDRA SWARTZ[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 234-242. doi: 10.13205/j.hjgc.202112035
    [17]WANG Qing-peng, YANG Zhao-hui, XU Rui, ZHANG Yan-ru, CAO Jiao. EFFECT OF NZVI ON ANAEROBIC DIGESTION SYSTEM WITH LOW ORGANIC SLUDGE AND ITS MICROBIAL COMMUNITY DIVERSITY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 31-37,54. doi: 10.13205/j.hjgc.202105005
    [18]LI Yong, YUAN Hui-zhou, KE Shui-zhou, ZHU Liang, LI Zhan-peng. EFFECTS OF MICROBIAL CARRIERS ON PERFORMANCE AND MICROBIAL COMMUNITY STRUCTURE OF MBBR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 100-106. doi: 10.13205/j.hjgc.202112015
    [19]WAN Ming-yue, DU Ji-ming, LI Jun, LI Yi, WANG Long-fei. INFLUENCE OF FLOWING AND STATIC WATER CONDITIONS ON MICROBIAL COMMUNITIES OF BIOFILMS ATTACHED ON SURFACE OF HYDRAULIC CONCRETE STRUCTURES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 35-40,69. doi: 10.13205/j.hjgc.202002004
    [20]WANG Kun, KE Shui-zhou, YUAN Hui-zhou, ZHU Jia, LI Jia-wan. EFFECT OF AMMONIA-NITROGEN CONCENTRATION ON MICROBIAL COMMUNITY STRUCTURE IN A MBBR PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 119-125. doi: 10.13205/j.hjgc.202009020
  • Cited by

    Periodical cited type(17)

    1. 李彬,陈佳亮,张路路,叶脉,宋烺,杨泽涛,范彬,王林. 感应电磁法在固废非法填埋环境损害鉴定评估案例中的应用. 环境生态学. 2024(08): 117-124 .
    2. 代先锋,袁玥. 非正规垃圾填埋场污染治理技术及二次污染防控探讨. 节能与环保. 2024(09): 31-37 .
    3. 梁丽琛,严小飞,王莉莉,蒋浩,许元顺. 简易生活垃圾填埋场土壤重金属污染特征及健康风险评价. 环境工程. 2024(10): 177-187 . 本站查看
    4. 李燕妮,厉昌余. 老旧填埋场陈腐垃圾治理和土地综合开发再利用探究. 环境卫生工程. 2024(S1): 151-157 .
    5. 陈华,陈嘉臣,何耀忠,刘畅,闫海虎,陈禧. ERT技术在生活垃圾填埋场堆填量分析应用研究. 四川环境. 2024(06): 39-45 .
    6. 郑吉,王丽晓,陈胤再,傅瑜. 非正规垃圾填埋场土壤重金属分布特征与污染评价. 四川环境. 2023(04): 239-243 .
    7. 刘爽,李沛烨,陈恺,宋慧敏,田立斌. 原位生物强化好氧稳定化技术在温州市某垃圾填埋场治理工程中的应用. 环境工程学报. 2023(07): 2334-2341 .
    8. 李超,许欢欢,高芳莹. 再生资源回收企业土壤重金属污染状况调查研究. 环境工程. 2023(S2): 1190-1195 . 本站查看
    9. 龙於洋,庞梦嫒,郭淑丽,李相杭,沈东升,朱敏. 填埋场腐殖土粒径分级特征及重金属污染程度评价. 环境污染与防治. 2023(12): 1677-1683 .
    10. 周睿,吴玲,簿丝,李婷婷,刘方圆,任何军. 深圳简易垃圾填埋场水土环境污染指标识别. 中国环境科学. 2022(03): 1287-1294 .
    11. 付高平,徐斌,张弛. 某非正规垃圾填埋场地下水风险管控技术研究. 绿色科技. 2022(04): 69-71 .
    12. 许文君,黄丹丹,梁铭珅,徐期勇. 硫化氢对填埋场生物炭改性覆土的甲烷氧化的影响. 环境工程. 2022(02): 120-126 . 本站查看
    13. 王英达,李洵,吴小雯,罗淋,王丰,王维明. 城镇生活垃圾填埋场开采的可行性评估体系. 环境工程. 2022(03): 181-187+202 . 本站查看
    14. 韩华,陈国华,周宏磊,赵红亮. 非正规垃圾堆放点场地污染状况初步调查工作方法研究——以北京垃圾堆放点为例. 环境卫生工程. 2022(02): 95-100 .
    15. 李怡佳,马俊伟,李玉倩,肖琛,沈心怡,牛云,陈家军. 氮素对苜蓿植物修复垃圾堆场镉-多环芳烃复合污染土壤及土壤细菌群落结构的影响. 环境科学. 2022(10): 4779-4788 .
    16. 汪薇,吴超,吴晓东,林贵英,杨久芸,罗璐. 常熟市主要城市湖泊水质及水体富营养化现状评价. 湖北农业科学. 2022(19): 47-54 .
    17. 谢文刚,龙思杰,罗继武,姚远,梁爽,李德安. 城市高强度开发区大型垃圾填埋场生态修复方案探讨——以武汉市某填埋场为例. 环境卫生工程. 2021(04): 86-92 .

    Other cited types(11)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.7 %FULLTEXT: 10.7 %META: 88.1 %META: 88.1 %PDF: 1.2 %PDF: 1.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 41.7 %其他: 41.7 %其他: 1.2 %其他: 1.2 %上海: 2.4 %上海: 2.4 %儋州: 1.2 %儋州: 1.2 %北京: 6.0 %北京: 6.0 %合肥: 1.2 %合肥: 1.2 %天津: 1.2 %天津: 1.2 %广州: 1.2 %广州: 1.2 %扬州: 2.4 %扬州: 2.4 %昆明: 6.0 %昆明: 6.0 %杭州: 1.2 %杭州: 1.2 %沈阳: 1.2 %沈阳: 1.2 %温州: 2.4 %温州: 2.4 %漯河: 3.6 %漯河: 3.6 %石家庄: 1.2 %石家庄: 1.2 %石河子: 1.2 %石河子: 1.2 %芒廷维尤: 14.3 %芒廷维尤: 14.3 %芝加哥: 2.4 %芝加哥: 2.4 %贵阳: 1.2 %贵阳: 1.2 %运城: 2.4 %运城: 2.4 %重庆: 2.4 %重庆: 2.4 %金昌: 1.2 %金昌: 1.2 %长沙: 1.2 %长沙: 1.2 %其他其他上海儋州北京合肥天津广州扬州昆明杭州沈阳温州漯河石家庄石河子芒廷维尤芝加哥贵阳运城重庆金昌长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (74) PDF downloads(1) Cited by(28)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return