Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Fangzhou, WEI Yanfeng, ZHU Fangfang, XIA Ziyuan, GOU Min, TANG Yueqin. ENRICHMENT AND STABILITY OF ENDOGENOUS MICROBIAL COMMUNITY IN CRUDE OIL PHASE OF RESERVOIR-PRODUCED FLUID[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 41-49. doi: 10.13205/j.hjgc.202410006
Citation: WANG Fangzhou, WEI Yanfeng, ZHU Fangfang, XIA Ziyuan, GOU Min, TANG Yueqin. ENRICHMENT AND STABILITY OF ENDOGENOUS MICROBIAL COMMUNITY IN CRUDE OIL PHASE OF RESERVOIR-PRODUCED FLUID[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 41-49. doi: 10.13205/j.hjgc.202410006

ENRICHMENT AND STABILITY OF ENDOGENOUS MICROBIAL COMMUNITY IN CRUDE OIL PHASE OF RESERVOIR-PRODUCED FLUID

doi: 10.13205/j.hjgc.202410006
  • Received Date: 2023-12-18
    Available Online: 2024-11-30
  • The crude oil phase of reservoir-produced fluid has been considered as an ideal environment for obtaining crude oil-degrading bacteria in recent years, but there is little research on microbial isolation from the crude oil phase. In this study, the microbial community structure in the aqueous-oil phase of the produced fluid from six oil wells located in the North China Oilfield was compared. Then, the endogenous community in the six crude oil phases was enriched, respectively. At the same time, the community succession in the process of enrichment was dynamically tracked. Finally, the response of the enriched communities to continuous disturbance of environmental factors was investigated. The results showed that the microbial diversity and richness in the crude oil phase were higher than those in the aqueous phase, and there were significant differences in the community structure between the two phases. The crude oil phases from well P1#, 92#, and 99# contained 111, 23, and 9 unique OTUs, respectively. After 10 generations of continuous enrichment, the crude oil degradation rates of enriched communities 15#, 92#, and P1# gradually increased and tended to be stable, and the maximum degradation rate was 81.9%, 71.5%, and 63.6%, respectively. The dominant bacteria in the community 15# mainly included Brevibacillus (89.3%), Novibacillus (8.0%), and Bacillus (1.5%), while Brevibacillus was the absolute dominant bacteria (with a relative abundance of 99%) in the community 92# and P1#. Under the multiple disturbances of temperature and oxygen, the microbial composition and abundance of community P1# changed. The dominant Brevibacillus was suppressed while the relative abundance of Paenibacillus and Aneurinibacillus increased, resulting in the accumulation of medium and long chain alkanes (C18 to C29). However, community 15# and 92# can maintain stable ability of alkane degradation. These results indicated that the crude oil phase of the produced liquid can act as a potential microbial source for exploring crude oil-degrading bacteria.
  • [1]
    TAO W Y, LIN J Z, WANG W D, et al. Biodegradation of aliphatic and polycyclic aromatic hydrocarbons by the thermophilic bioemulsifier-producing Aeribacillus pallidus strain SL-1[J].Ecotoxicol Environ Saf,2020,189:109994.
    [2]
    GAO P K, LI G Q, TIAN H M, et al. Differences in microbial community composition between injection and production water samples of water flooding petroleum reservoirs[J].Biogeosciences,2015,12:3403-3414.
    [3]
    XIAO M, SUN S S, ZHANG Z Z, et al. Analysis of bacterial diversity in two oil blocks from two low-permeability reservoirs with high salinities[J].Scientific Reports,2016,6:19600.
    [4]
    VOSKUHL L, AKBARI A, MVLLER H, et al. Indigenous microbial communities in heavy oil show a threshold response to salinity[J].FEMS Microbiol Ecol,2021,97:157.
    [5]
    MECKENSTOCK R U, von NETZER F, STUMPP C, et al. Oil biodegradation. Water droplets in oil are microhabitats for microbial life[J].Science,2014,345:673-676.
    [6]
    PANNEKENS M, KROLL L, MVLLER H, et al. Oil reservoirs, an exceptional habitat for microorganisms[J]. N Biotechnol,2019,49:1-9.
    [7]
    CAI M, NIE Y, CHI C Q, et al. Crude oil as a microbial seed bank with unexpected functional potentials[J]. Scientific Reports,2015,5:16057.
    [8]
    KRYACHKO Y, DONG X, SENSEN C W, et al. Compositions of microbial communities associated with oil and water in a mesothermic oil field[J].Antonie Van Leeuwenhoek,2012,101:493-506.
    [9]
    LIANG B, ZHANG K, WANG L Y, et al. Different diversity and distribution of archaeal community in the aqueous and oil phases of production fluid from high-temperature petroleum reservoirs[J].Front Microbiol,2018,9:841.
    [10]
    WEI Y F, WANG L, XIA Z Y, et al. Microbial communities in crude oil phase and filter-graded aqueous phase from a Daqing oilfield after polymer flooding[J]. J Appl Microbiol,2022,133:842-856.
    [11]
    LIU Y F, GALZERANI D D, MBADINGA S M, et al. Metabolic capability and in situ activity of microorganisms in an oil reservoir[J].Microbiome,2018,6:5.
    [12]
    WU Z L, LIN Z, SUN Z Y, et al. A comparative study of mesophilic and thermophilic anaerobic digestion of municipal sludge with high-solids content: reactor performance and microbial community[J].Bioresour Technol,2020,302:122851.
    [13]
    CHAILLAN F, Le FLōCHE A, BURY E, et al. Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms[J].Res Microbiol,2004,155:587-595.
    [14]
    GRIFFITHS R I, WHITELEY A S, O'DONNELL A G, et al. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition[J].Appl Environ Microbiol,2000,66:5488-5491.
    [15]
    李明星, 李红英, 刘鹏, 等. 苏里格气田典型区块采出水乳化特征及乳化影响因素分析[J].油田化学,2023,40:697-703.
    [16]
    SONG W F, WANG J W, YAN Y C, et al. Shifts of the indigenous microbial communities from reservoir production water in crude oil- and asphaltene-degrading microcosms[J].International Biodeterioration & Biodegradation,2018,132:18-29.
    [17]
    SHIBULAL B, AL-Bahry S N, AL-Wahaibi Y M, et al. Analysis of bacterial diversity in different heavy oil wells of a reservoir in south oman with alkaline pH[J].Scientifica,2018,21:9230143.
    [18]
    吴慧君, 宋权威, 郑瑾, 等. 微生物降解石油烃的功能基因研究进展[J].微生物学通报,2020,47(10):3355-3368.
    [19]
    王小通, 向龙斌,张艺馨. 辽河高凝油微生物采油菌剂研究及应用评价[J].岩性油气藏,2017,29(5):162-168.
    [20]
    SHIBULAL B, AL-BAHRY S N, AL-WAHAIBI Y M, et al. The potential of indigenous Paenibacillus ehimensis BS1 for recovering heavy crude oil by biotransformation to light fractions[J].PLoS One,2017,12:e0171432.
    [21]
    HUANG Y, LI L, YIN X, et al. Polycyclic aromatic hydrocarbon (PAH) biodegradation capacity revealed by a genome-function relationship approach[J].Environ Microbiome,2023,18:39.
    [22]
    TANG J, WANG Y Q, YANG G Q, et al. Complete genome sequence of the dissimilatory azo reducing thermophilic bacterium Novibacillus thermophiles SG-1[J].J Biotechnol,2018,284:6-10.
    [23]
    HAUSMANN B, KNORR K H, SCHRECK K, et al. Consortia of low-abundance bacteria drive sulfate reduction-dependent degradation of fermentation products in peat soil microcosms[J].ISME J,2016,10:2365-2375.
    [24]
    GAO P K, WANG H B, LI G X, et al. Low-abundance Dietzia inhabiting a water-flooding oil reservoir and the application potential for oil recovery[J].BioMed Research International,2019:2193453.
    [25]
    HU B, WANG M X, GENG S, et al. Metabolic exchange with non-alkane-consuming pseudomonas stutzeri slg510a3-8 improves n-alkane biodegradation by the alkane degrader Dietzia sp. Strain DQ12-45-1b[J]. Applied and Environmental Microbiology,2020,86:e02931-02919.
    [26]
    SAGHATELYAN A, MARGARYAN A, PANOSYAN H, et al. Microbial diversity of terrestrial geothermal springs in Armenia and Nagorno-karabakh: a review[J].Microorganisms,2021,9(7).
    [27]
    RICCARDI C, CALVANESE M, GHINI V, et al. Metabolic robustness to growth temperature of a cold-adapted marine bacterium[J].Msystems,2023,8:e01124-01122.
    [28]
    PENG C, WAN X, ZHANG J, et al. Bacterial diversity and competitors for degradation of hazardous oil refining waste under selective pressures of temperature and oxygen[J]. J Hazard Mater,2022,427:128201.
    [29]
    YANNARELL A C, STEPPE T F, PAERL H W. Disturbance and recovery of microbial community structure and function following Hurricane Frances[J].Environ Microbiol,2007,9:576-583.
    [30]
    SAN LEÓN D, NOGALES J. Toward merging bottom-up and top-down model-based designing of synthetic microbial communities[J].Curr Opin Microbiol,2022,69:102169.
    [31]
    GUDELJ I, KINNERSLEY M, RASHKOV P, et al. Stability of cross-feeding polymorphisms in microbial communities[J].PLoS Comput Biol,2016,12:e1005269.
  • Relative Articles

    [1]TONG Jingzhe, NI Changjian, MI Jiayuan, JIANG Mengjiao, ZHANG Ying, SHI Qiaoyu. A BP NEURAL NETWORK MODEL OF AEROSOL SCATTERING HYGROSCOPIC GROWTH FACTOR[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 131-137,165. doi: 10.13205/j.hjgc.202307018
    [2]WEI Qing, CHEN Yongqi, XIE Yifan, LIN Jingying, YIN Hailong. POLLUTION MECHANISM OF WET-WEATHER PUMPING DISCHARGE IN SEPARATED STORMWATER DRAINAGE SYSTEMS BASED ON ARTIFICIAL NEURAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 54-60,181. doi: 10.13205/j.hjgc.202312006
    [3]LI Yuanyuan, LIU Hailong. PREDICTION OF TOTAL PHOSPHORUS IN RIVERS BASED ON ATTENTION MECHANISM OF TEMPORAL CONVOLUTIONAL NETWORKS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 163-171. doi: 10.13205/j.hjgc.202305022
    [4]PAN Siyu, ZHANG Meiling. PREDICTION OF CARBON DIOXIDE EMISSION IN GANSU PROVINCE BASED ON BP NEURAL NETWORK AND ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 61-68,85. doi: 10.13205/j.hjgc.202307009
    [5]YU Feng, WANG Kejia, ZHANG Wenlong, LI Yi. PREDICTION OF COAGULANT DOSAGE FOR IN-SITU TURBIDITY CONTROL IN WATER ECOLOGICAL RESTORATION BASED ON BP NEURAL NETWORK OPTIMIZED BY GENETIC ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 154-163. doi: 10.13205/j.hjgc.202304022
    [6]XIE Wei, XU Jiao, LIN Zhiguo, YAN Di, ZHANG Yinglei. RESEARCH ON REAL-TIME SOURCE APPORTIONMENT METHOD OF VOCs BASED ON BP NEURAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 231-238. doi: 10.13205/j.hjgc.202212031
    [7]GUO Zirui, CHEN Zhiqiang, CHI Riguang, SHEN Aihua. PREDICTION OF POLYHYDROXYALKANOATE (PHA) PRODUCTION UTILIZING FOOD WASTE BASED ON GA-BP NEURAL NETWORK METHOD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 166-173. doi: 10.13205/j.hjgc.202204024
    [8]YU Shen-ting, LIU Ping. LONG SHORT-TERM MEMORY-CONVOLUTION NEURAL NETWORK (LSTM-CNN) FOR PREDICTION OF PM2.5 CONCENTRATION IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 176-180,66. doi: 10.13205/j.hjgc.202006029
    [9]LIANG Tao, XIE Gao-feng, MI Da-bin, JIANG Wen. PREDICTION OF PM10 CONCENTRATION BASED ON CEEMDAN-SE AND LSTM NEURAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 107-113. doi: 10.13205/j.hjgc.202002015
    [13]Ren Jinxia Yu Zhiwu You Xin, . MODEL FOR WATER QUALITY EVALUATION BASED ON WAVELET NEURAL NETWORK OF ADAPTIVE GENETIC ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 144-148. doi: 10.13205/j.hjgc.201505031
  • Cited by

    Periodical cited type(6)

    1. 张亮,杨博文,刘宇衡,张雨,高瑜,李佳诚,李俊辰,林斯杰. 基于机器视觉的生化池监测技术. 环境工程. 2025(03): 1-10 . 本站查看
    2. 刘志,高东明. 不同深度学习模型在餐厨垃圾类型识别中的应用与比较. 环境工程. 2024(03): 254-260 . 本站查看
    3. 冯丁,刘晶静,马文丹,刘玉学,杨尘,张萌萌. 基于机器学习的生物炭吸附重金属建模研究进展. 工业水处理. 2024(12): 1-11 .
    4. 王文胜,年诚旭,张超,阎如鹏,吴鑫全,张歆博. 基于YOLO v5模型的非住宅区自动垃圾分类箱设计. 环境工程. 2022(03): 159-165 . 本站查看
    5. 李长江,余海涛,李官星,李玥洋,谭雯文. 基于SqueezeNet-Tiny的可回收垃圾智能垃圾桶设计及实现. 现代信息科技. 2022(17): 75-77 .
    6. 亢红波,蔡学瑞,杨亮,周倩倩. 一种智能垃圾分类装置设计. 西安邮电大学学报. 2022(05): 60-66 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.4 %FULLTEXT: 9.4 %META: 86.9 %META: 86.9 %PDF: 3.6 %PDF: 3.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.1 %其他: 17.1 %其他: 1.1 %其他: 1.1 %China: 0.6 %China: 0.6 %Howard: 0.2 %Howard: 0.2 %上海: 8.1 %上海: 8.1 %东莞: 4.3 %东莞: 4.3 %临汾: 0.2 %临汾: 0.2 %乌鲁木齐: 0.6 %乌鲁木齐: 0.6 %亚特兰大: 0.2 %亚特兰大: 0.2 %伦敦: 0.2 %伦敦: 0.2 %佛山: 1.3 %佛山: 1.3 %保定: 1.9 %保定: 1.9 %北京: 3.4 %北京: 3.4 %十堰: 0.2 %十堰: 0.2 %南京: 1.1 %南京: 1.1 %台州: 1.5 %台州: 1.5 %合肥: 0.6 %合肥: 0.6 %呼和浩特: 0.2 %呼和浩特: 0.2 %和田: 0.2 %和田: 0.2 %哈尔滨: 0.2 %哈尔滨: 0.2 %嘉兴: 0.6 %嘉兴: 0.6 %大同: 0.2 %大同: 0.2 %大连: 1.7 %大连: 1.7 %天津: 2.1 %天津: 2.1 %太原: 0.2 %太原: 0.2 %安大略: 0.2 %安大略: 0.2 %宜春: 0.2 %宜春: 0.2 %宣城: 0.2 %宣城: 0.2 %密蘇里城: 0.4 %密蘇里城: 0.4 %常德: 0.6 %常德: 0.6 %广州: 2.4 %广州: 2.4 %张家口: 0.2 %张家口: 0.2 %意法半: 0.2 %意法半: 0.2 %成都: 0.6 %成都: 0.6 %扬州: 0.9 %扬州: 0.9 %无锡: 0.2 %无锡: 0.2 %昆明: 1.1 %昆明: 1.1 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.2 %朝阳: 0.2 %杭州: 3.2 %杭州: 3.2 %杰克逊维尔: 0.2 %杰克逊维尔: 0.2 %桂林: 0.2 %桂林: 0.2 %武汉: 1.1 %武汉: 1.1 %汕头: 0.2 %汕头: 0.2 %沈阳: 0.4 %沈阳: 0.4 %泰安: 0.2 %泰安: 0.2 %洛杉矶: 0.2 %洛杉矶: 0.2 %济南: 0.6 %济南: 0.6 %深圳: 0.2 %深圳: 0.2 %温州: 0.4 %温州: 0.4 %湖州: 0.9 %湖州: 0.9 %漯河: 2.6 %漯河: 2.6 %濮阳: 0.2 %濮阳: 0.2 %焦作: 0.4 %焦作: 0.4 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.2 %福州: 0.2 %绥化: 0.4 %绥化: 0.4 %芒廷维尤: 5.8 %芒廷维尤: 5.8 %芝加哥: 1.1 %芝加哥: 1.1 %衡水: 2.1 %衡水: 2.1 %衡阳: 0.2 %衡阳: 0.2 %西宁: 14.3 %西宁: 14.3 %西安: 0.2 %西安: 0.2 %贵阳: 0.6 %贵阳: 0.6 %运城: 1.7 %运城: 1.7 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.9 %郑州: 0.9 %鄂州: 0.6 %鄂州: 0.6 %重庆: 1.1 %重庆: 1.1 %金华: 0.2 %金华: 0.2 %长沙: 1.9 %长沙: 1.9 %青岛: 0.4 %青岛: 0.4 %其他其他ChinaHoward上海东莞临汾乌鲁木齐亚特兰大伦敦佛山保定北京十堰南京台州合肥呼和浩特和田哈尔滨嘉兴大同大连天津太原安大略宜春宣城密蘇里城常德广州张家口意法半成都扬州无锡昆明晋城朝阳杭州杰克逊维尔桂林武汉汕头沈阳泰安洛杉矶济南深圳温州湖州漯河濮阳焦作石家庄福州绥化芒廷维尤芝加哥衡水衡阳西宁西安贵阳运城遵义邯郸郑州鄂州重庆金华长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (82) PDF downloads(1) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return