Citation: | WANG Fangzhou, WEI Yanfeng, ZHU Fangfang, XIA Ziyuan, GOU Min, TANG Yueqin. ENRICHMENT AND STABILITY OF ENDOGENOUS MICROBIAL COMMUNITY IN CRUDE OIL PHASE OF RESERVOIR-PRODUCED FLUID[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 41-49. doi: 10.13205/j.hjgc.202410006 |
[1] |
TAO W Y, LIN J Z, WANG W D, et al. Biodegradation of aliphatic and polycyclic aromatic hydrocarbons by the thermophilic bioemulsifier-producing Aeribacillus pallidus strain SL-1[J].Ecotoxicol Environ Saf,2020,189:109994.
|
[2] |
GAO P K, LI G Q, TIAN H M, et al. Differences in microbial community composition between injection and production water samples of water flooding petroleum reservoirs[J].Biogeosciences,2015,12:3403-3414.
|
[3] |
XIAO M, SUN S S, ZHANG Z Z, et al. Analysis of bacterial diversity in two oil blocks from two low-permeability reservoirs with high salinities[J].Scientific Reports,2016,6:19600.
|
[4] |
VOSKUHL L, AKBARI A, MVLLER H, et al. Indigenous microbial communities in heavy oil show a threshold response to salinity[J].FEMS Microbiol Ecol,2021,97:157.
|
[5] |
MECKENSTOCK R U, von NETZER F, STUMPP C, et al. Oil biodegradation. Water droplets in oil are microhabitats for microbial life[J].Science,2014,345:673-676.
|
[6] |
PANNEKENS M, KROLL L, MVLLER H, et al. Oil reservoirs, an exceptional habitat for microorganisms[J]. N Biotechnol,2019,49:1-9.
|
[7] |
CAI M, NIE Y, CHI C Q, et al. Crude oil as a microbial seed bank with unexpected functional potentials[J]. Scientific Reports,2015,5:16057.
|
[8] |
KRYACHKO Y, DONG X, SENSEN C W, et al. Compositions of microbial communities associated with oil and water in a mesothermic oil field[J].Antonie Van Leeuwenhoek,2012,101:493-506.
|
[9] |
LIANG B, ZHANG K, WANG L Y, et al. Different diversity and distribution of archaeal community in the aqueous and oil phases of production fluid from high-temperature petroleum reservoirs[J].Front Microbiol,2018,9:841.
|
[10] |
WEI Y F, WANG L, XIA Z Y, et al. Microbial communities in crude oil phase and filter-graded aqueous phase from a Daqing oilfield after polymer flooding[J]. J Appl Microbiol,2022,133:842-856.
|
[11] |
LIU Y F, GALZERANI D D, MBADINGA S M, et al. Metabolic capability and in situ activity of microorganisms in an oil reservoir[J].Microbiome,2018,6:5.
|
[12] |
WU Z L, LIN Z, SUN Z Y, et al. A comparative study of mesophilic and thermophilic anaerobic digestion of municipal sludge with high-solids content: reactor performance and microbial community[J].Bioresour Technol,2020,302:122851.
|
[13] |
CHAILLAN F, Le FLōCHE A, BURY E, et al. Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms[J].Res Microbiol,2004,155:587-595.
|
[14] |
GRIFFITHS R I, WHITELEY A S, O'DONNELL A G, et al. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition[J].Appl Environ Microbiol,2000,66:5488-5491.
|
[15] |
李明星, 李红英, 刘鹏, 等. 苏里格气田典型区块采出水乳化特征及乳化影响因素分析[J].油田化学,2023,40:697-703.
|
[16] |
SONG W F, WANG J W, YAN Y C, et al. Shifts of the indigenous microbial communities from reservoir production water in crude oil- and asphaltene-degrading microcosms[J].International Biodeterioration & Biodegradation,2018,132:18-29.
|
[17] |
SHIBULAL B, AL-Bahry S N, AL-Wahaibi Y M, et al. Analysis of bacterial diversity in different heavy oil wells of a reservoir in south oman with alkaline pH[J].Scientifica,2018,21:9230143.
|
[18] |
吴慧君, 宋权威, 郑瑾, 等. 微生物降解石油烃的功能基因研究进展[J].微生物学通报,2020,47(10):3355-3368.
|
[19] |
王小通, 向龙斌,张艺馨. 辽河高凝油微生物采油菌剂研究及应用评价[J].岩性油气藏,2017,29(5):162-168.
|
[20] |
SHIBULAL B, AL-BAHRY S N, AL-WAHAIBI Y M, et al. The potential of indigenous Paenibacillus ehimensis BS1 for recovering heavy crude oil by biotransformation to light fractions[J].PLoS One,2017,12:e0171432.
|
[21] |
HUANG Y, LI L, YIN X, et al. Polycyclic aromatic hydrocarbon (PAH) biodegradation capacity revealed by a genome-function relationship approach[J].Environ Microbiome,2023,18:39.
|
[22] |
TANG J, WANG Y Q, YANG G Q, et al. Complete genome sequence of the dissimilatory azo reducing thermophilic bacterium Novibacillus thermophiles SG-1[J].J Biotechnol,2018,284:6-10.
|
[23] |
HAUSMANN B, KNORR K H, SCHRECK K, et al. Consortia of low-abundance bacteria drive sulfate reduction-dependent degradation of fermentation products in peat soil microcosms[J].ISME J,2016,10:2365-2375.
|
[24] |
GAO P K, WANG H B, LI G X, et al. Low-abundance Dietzia inhabiting a water-flooding oil reservoir and the application potential for oil recovery[J].BioMed Research International,2019:2193453.
|
[25] |
HU B, WANG M X, GENG S, et al. Metabolic exchange with non-alkane-consuming pseudomonas stutzeri slg510a3-8 improves n-alkane biodegradation by the alkane degrader Dietzia sp. Strain DQ12-45-1b[J]. Applied and Environmental Microbiology,2020,86:e02931-02919.
|
[26] |
SAGHATELYAN A, MARGARYAN A, PANOSYAN H, et al. Microbial diversity of terrestrial geothermal springs in Armenia and Nagorno-karabakh: a review[J].Microorganisms,2021,9(7).
|
[27] |
RICCARDI C, CALVANESE M, GHINI V, et al. Metabolic robustness to growth temperature of a cold-adapted marine bacterium[J].Msystems,2023,8:e01124-01122.
|
[28] |
PENG C, WAN X, ZHANG J, et al. Bacterial diversity and competitors for degradation of hazardous oil refining waste under selective pressures of temperature and oxygen[J]. J Hazard Mater,2022,427:128201.
|
[29] |
YANNARELL A C, STEPPE T F, PAERL H W. Disturbance and recovery of microbial community structure and function following Hurricane Frances[J].Environ Microbiol,2007,9:576-583.
|
[30] |
SAN LEÓN D, NOGALES J. Toward merging bottom-up and top-down model-based designing of synthetic microbial communities[J].Curr Opin Microbiol,2022,69:102169.
|
[31] |
GUDELJ I, KINNERSLEY M, RASHKOV P, et al. Stability of cross-feeding polymorphisms in microbial communities[J].PLoS Comput Biol,2016,12:e1005269.
|
1. | 李彬,陈佳亮,张路路,叶脉,宋烺,杨泽涛,范彬,王林. 感应电磁法在固废非法填埋环境损害鉴定评估案例中的应用. 环境生态学. 2024(08): 117-124 . ![]() | |
2. | 代先锋,袁玥. 非正规垃圾填埋场污染治理技术及二次污染防控探讨. 节能与环保. 2024(09): 31-37 . ![]() | |
3. | 梁丽琛,严小飞,王莉莉,蒋浩,许元顺. 简易生活垃圾填埋场土壤重金属污染特征及健康风险评价. 环境工程. 2024(10): 177-187 . ![]() | |
4. | 李燕妮,厉昌余. 老旧填埋场陈腐垃圾治理和土地综合开发再利用探究. 环境卫生工程. 2024(S1): 151-157 . ![]() | |
5. | 陈华,陈嘉臣,何耀忠,刘畅,闫海虎,陈禧. ERT技术在生活垃圾填埋场堆填量分析应用研究. 四川环境. 2024(06): 39-45 . ![]() | |
6. | 郑吉,王丽晓,陈胤再,傅瑜. 非正规垃圾填埋场土壤重金属分布特征与污染评价. 四川环境. 2023(04): 239-243 . ![]() | |
7. | 刘爽,李沛烨,陈恺,宋慧敏,田立斌. 原位生物强化好氧稳定化技术在温州市某垃圾填埋场治理工程中的应用. 环境工程学报. 2023(07): 2334-2341 . ![]() | |
8. | 李超,许欢欢,高芳莹. 再生资源回收企业土壤重金属污染状况调查研究. 环境工程. 2023(S2): 1190-1195 . ![]() | |
9. | 龙於洋,庞梦嫒,郭淑丽,李相杭,沈东升,朱敏. 填埋场腐殖土粒径分级特征及重金属污染程度评价. 环境污染与防治. 2023(12): 1677-1683 . ![]() | |
10. | 周睿,吴玲,簿丝,李婷婷,刘方圆,任何军. 深圳简易垃圾填埋场水土环境污染指标识别. 中国环境科学. 2022(03): 1287-1294 . ![]() | |
11. | 付高平,徐斌,张弛. 某非正规垃圾填埋场地下水风险管控技术研究. 绿色科技. 2022(04): 69-71 . ![]() | |
12. | 许文君,黄丹丹,梁铭珅,徐期勇. 硫化氢对填埋场生物炭改性覆土的甲烷氧化的影响. 环境工程. 2022(02): 120-126 . ![]() | |
13. | 王英达,李洵,吴小雯,罗淋,王丰,王维明. 城镇生活垃圾填埋场开采的可行性评估体系. 环境工程. 2022(03): 181-187+202 . ![]() | |
14. | 韩华,陈国华,周宏磊,赵红亮. 非正规垃圾堆放点场地污染状况初步调查工作方法研究——以北京垃圾堆放点为例. 环境卫生工程. 2022(02): 95-100 . ![]() | |
15. | 李怡佳,马俊伟,李玉倩,肖琛,沈心怡,牛云,陈家军. 氮素对苜蓿植物修复垃圾堆场镉-多环芳烃复合污染土壤及土壤细菌群落结构的影响. 环境科学. 2022(10): 4779-4788 . ![]() | |
16. | 汪薇,吴超,吴晓东,林贵英,杨久芸,罗璐. 常熟市主要城市湖泊水质及水体富营养化现状评价. 湖北农业科学. 2022(19): 47-54 . ![]() | |
17. | 谢文刚,龙思杰,罗继武,姚远,梁爽,李德安. 城市高强度开发区大型垃圾填埋场生态修复方案探讨——以武汉市某填埋场为例. 环境卫生工程. 2021(04): 86-92 . ![]() |