Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
MA Xiao-qian, ZHANG Zhe, LIU Chao, WANG Jun-jie, WANG Jia-lin, YU Yi, CAO Rui-jie, SHI Zhi-li, WANG Ya-yi. TREATMENT OF LEACHATE FROM MUNICIPAL SOLID WASTE INCINERATION PLANT BY COMBINED ANAMMOX PROCESS: NITROGEN REMOVAL AND MICROBIAL MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 110-118. doi: 10.13205/j.hjgc.202111014
Citation: DUAN Kaixin, SONG Guohua, ZHAI Zhiqiang, LU Miao. SPATIOTEMPORAL EMISSION CHARACTERISTICS ANALYSIS IN BOTTLENECK NODES OF HIGHWAY FREIGHT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 83-91. doi: 10.13205/j.hjgc.202410011

SPATIOTEMPORAL EMISSION CHARACTERISTICS ANALYSIS IN BOTTLENECK NODES OF HIGHWAY FREIGHT

doi: 10.13205/j.hjgc.202410011
  • Received Date: 2023-12-03
    Available Online: 2024-11-30
  • Studying the emission generation mechanism and dispersion features in the bottleneck nodes of highway freight can provide a theoretical basis for pollution joint prevention and control in highway emission hotspots. To achieve the dynamic portrayal of spatial-temporal emissions, second-by-second driving data, and heavy-duty diesel vehicle emission test data were collected from Beijing’s key freight road network, then, based on the characterization of congestion formation and dissipation, a quantification index of emission intensity in different driving conditions (deceleration, acceleration, and idling) was designed. Furthermore, an emission spatial-temporal distribution model based on the vehicle specific power was built. Finally, taking the Xiji Comprehensive Inspection Station in Tongzhou District Beijing as a case, we compared the changes in the spatial-temporal emissions(CO2, CO, THC, NOx) before and after the establishment of the station, and the adoption of two emission reduction measures(sampling and enhancing service efficiency). The results showed that the total emissions at the bottleneck nodes were 2.2 to 2.5 times higher than the conventional ones. The queuing area in front of the bottleneck and 0~10 m behind it had the maximum emission intensity, which was 2.1 to 2.9 times higher than the decelerated and bottleneck operating areas. To a certain extent, sampling and enhancing service efficiency can reduce polution emissions. Moreover, both of the emission reduction strategies significantly improve NOx emission reduction effect.
  • [1]
    中华人民共和国生态环境部. 中国移动源环境管理年报(2022年)[R]. 2022.
    [2]
    张晔, 宋国华, 尹航, 等. 综合交通运输系统碳排放预测的不确定性分析[J]. 交通运输工程与信息学报, 2023, 21(1): 64-79.
    [3]
    ZHANG Z, SONG G, CHEN J, et al. Development of a simplified model of speed-specific vehicle-specific power distribution based on vehicle weight for fuel consumption estimates[J]. Transportation Research Record, 2020, 2674(12): 52-67.
    [4]
    WANG X, SONG G H, ZHAI Z Q, et al. Effects of vehicle load on emissions of heavy-duty diesel trucks: a study based on real-world data[J]. International Journal of Environmental Research and Public Health, 2021, 18(8): 3877.
    [5]
    胥耀方, 于雷, 郝艳召, 等. 机动车尾气排放宏观模型开发与应用初探[J]. 交通运输系统工程与信息, 2009, 9(2): 147-154.
    [6]
    WANG Q D, HUO H, HE K B, et al. Characterization of vehicle driving patterns and development of driving cycles in Chinese cities[J]. Transportation Research Part D: Transport and Environment, 2008, 13(5): 289-297.
    [7]
    RAKHA H, AHN K, TRANI A. Development of VT-Micro model for estimating hot stabilized light duty vehicle and truck emissions[J]. Transportation Research Part D: Transport and Environment, 2004, 9(1): 49-74.
    [8]
    DAVIS N. IVE model users manual version 2.0[R]. University of California at Riverside, 2008.
    [9]
    U.S. Environmental protection agency. MOVES2010 Highway Vehicle: population and activity Data: EPA-420-R-10-026[R]. 2010.
    [10]
    DUARTE G O, GONÇALVES G A, FARIAS T L. Analysis of fuel consumption and pollutant emissions of regulated and alternative driving cycles based on real-world measurements[J]. Transportation Research Part D: Transport and Environment, 2016, 44: 43-54.
    [11]
    李晨旭. 基于行驶轨迹的城市机动车排放热点区域污染物时空分布研究[D]. 北京: 北京交通大学, 2020.
    [12]
    JIMÉNEZ-PALACIOS J L. Understanding and quantifying motor vehicle emissions with vehicle specific power and TILDAS remote sensing[D]. Massachusetts Institute of Technology, 1999.
    [13]
    SONG G H, YU L, WU Y Z. Development of speed correction factors based on speed-specific distributions of vehicle specific power for urban restricted-access roadways[J]. Journal of Transportation Engineering, 2016, 142(3):4016001.
    [14]
    SONG G H, YU L, TU Z. Distribution characteristics of vehicle-specific power on urban restricted-access roadways[J]. Journal of Transportation Engineering, 2012, 138(2): 202-209.
    [15]
    US EPA. Population and activity of on-road vehicles in MOVES2014: EPA-420-R-16-003a[R]. 2016.
    [16]
    柏洋洋, 何超, 李加强, 等. 基于GPS数据的重型柴油货车排放时空特征分析[J]. 环境工程, 2023, 41(4): 63-70

    ,100.
    [17]
    ZHOU B Y, HE L Q, ZHANG S M, et al. Variability of fuel consumption and CO2 emissions of a gasoline passenger car under multiple in-laboratory and on-road testing conditions[J]. Journal of Environmental Sciences, 2023, 125: 266-276.
    [18]
    王晓宁, 于思源, 郭术林. 基于低温工况速度变化的CAL3QHC模型修正[J]. 环境工程, 2020, 38(11): 130-134.
    [19]
    CHOUDHARY A, GOKHALE S. Urban real-world driving traffic emissions during interruption and congestion[J]. Transportation Research Part D: Transport and Environment, 2016, 43: 59-70.
    [20]
    HE Z B, ZHANG W Y, JIA N. Estimating carbon dioxide emissions of freeway traffic: a spatiotemporal cell-based model[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(5): 1976-1986.
    [21]
    殷子渊, 张凯山. 典型城市轻型汽油车尾气排放模式分析[J]. 环境工程, 2021, 39(4): 64-71.
    [22]
    王清洲, 栾海敏, 范鑫, 等. 高速公路主线收费站节能减排测算模型与实例分析[J]. 环境工程, 2019, 37(6): 184-189.
    [23]
    赵琦, 于雷, 宋国华. 轻型车与重型车高速公路比功率分布特征研究[J]. 交通运输系统工程与信息, 2015, 15(3): 196-203.
    [24]
    中华人民共和国公安部. 道路交通拥堵度评价方法[S]. 2020.
    [25]
    陈喜群. 交通流动态随机演化模型研究[D]. 北京: 清华大学, 2012.
    [26]
    中华人民共和国工业和信息化部, 公安部. 汽车、挂车及汽车列车外廓尺寸、轴荷及质量限值: GB 1589—2016[S]. 2016.
    [27]
    中华人民共和国国务院. 中华人民共和国道路交通安全法(修订)[R]. 2021.
  • Relative Articles

    [1]WU Yulun, LI Zemin, CHENG Xiaoqian, QIU Guanglei, WEI Chaohai. PREDICTION OF NITROGEN REMOVAL PERFORMANCE AND IDENTIFICATION OF KEY PARAMETERS OF PARTIAL NITRIFICATION/PARTIAL DENITRIFICATION-ANAMMOX PROCESS BASED ON MACHINE LEARNING[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 180-190. doi: 10.13205/j.hjgc.202409017
    [2]ZHANG Zheng, QIU Dahe, JING Zibo, XUE Bo, HU Xinyu. RETINANET-BASED DIRECTED TARGET DETECTION FOR RECYCLABLE WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 160-168. doi: 10.13205/j.hjgc.202406019
    [3]ZHOU Lei, LI Yalan, ZHANG Chaoqun, SONG Wen, YANG Kun, DU Mingyi, CHEN Qiang, LIU Yang. RESEARCH PROGRESS ON MONITORING AND SIMULATION OF SPATIAL DISTRIBUTION, VOLUME AND VARIATION OF CONSTRUCTION WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 243-253. doi: 10.13205/j.hjgc.202403030
    [4]XU Li, ZHOU Lawu, LI Gaojia. A RECYCLABLE WASTE SORTING SYSTEM BASED ON AN IMPROVED INCEPTION RESNET V2 NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 233-241. doi: 10.13205/j.hjgc.202404027
    [5]LIU Zhi, GAO Dongming. APPLICATION AND COMPARISON OF DIFFERENT DEEP LEARNING MODELS IN RECOGNITION OF FOOD WASTE TYPES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 254-260. doi: 10.13205/j.hjgc.202403031
    [6]LIN Yudao, TAO Tao, XIN Kunlun, PU Zhengheng, CHEN Lei. GRAPH DEEP LEARNING: APPLICATION ON SHORT-TERM WATER DEMAND FORECASTING FOR WATER DISTRIBUTION NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 149-153. doi: 10.13205/j.hjgc.202304021
    [7]LI Yuanyuan, LIU Hailong. PREDICTION OF TOTAL PHOSPHORUS IN RIVERS BASED ON ATTENTION MECHANISM OF TEMPORAL CONVOLUTIONAL NETWORKS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 163-171. doi: 10.13205/j.hjgc.202305022
    [8]ZENG Xiangji, YAN Feng, LI Yonggang, PAN Yan, YANG Jingya, TAN Xiangtian. MONITORING METHODS AND THEIR APPLICATION OF FLOWING WATER POLLUTION BASED ON INTELLIGENT VISION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 78-83,122. doi: 10.13205/j.hjgc.202311014
    [9]ZHOU Yi, XIONG Zhen, WU Mingming, LI Jin, CHEN Cong, GAO Fang, LIU Chang, HUANG Kai. DESIGN AND IMPLEMENTATION OF INTELLIGENT OPERATION MANAGEMENT PLATFORM FOR AN UNDERGROUND SEWAGE TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 148-153. doi: 10.13205/j.hjgc.202311023
    [10]YUAN Hongchun, ZANG Tianqi. DETECTION OF UNDERWATER TRASH BASED ON Ghost-YOLOv5 AND ATTENTION MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 214-221. doi: 10.13205/j.hjgc.202307029
    [11]BAO Zunsheng, XIONG Xiaoli, LIU Jicheng, XIN Lu, ZHANG Danyu, LI Shanqiang. EXPLORATION OF MANUAL FINE REGULATION OF CARBON SOURCE DOSAGE IN AN ADVANCED WASTEWATER TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 137-142. doi: 10.13205/j.hjgc.202304019
    [12]HU Song, LIU Guohong, HE Ying, YAN Jiachen, CHEN Hanle, YAN Xiliang, YAN Bing. PREDICTION ON PHOTOELECTRIC CONVERSION EFFICIENCY OF ORGANIC PHOTOVOLTAIC MATERIALS USING END-TO-END DEEP LEARNING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 188-193. doi: 10.13205/j.hjgc.202206024
    [13]JIN Peiwei, YAO Yan, LIANG Xiaoyu, CAI Jinhui. OVERVIEW OF RESEARCHES ON MUNICIPAL SOLID WASTE IMAGE RECOGNITION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 196-206. doi: 10.13205/j.hjgc.202201029
    [14]WANG Wensheng, NIAN Chengxu, ZHANG Chao, YAN Rupeng, WU Xinquan, ZHANG Xinbo. DESIGN OF AUTOMATIC GARBAGE SORTING BIN FOR NON-RESIDENTIAL AREA BASED ON YOLO v5[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 159-165. doi: 10.13205/j.hjgc.202203024
    [15]WANG Yiming, MA Zhenhua, YANG Mengqi, DONG Xin, ZENG Siyu. A HYBRID MODELING STRATEGY FOR CONTROL SIMULATOR OF URBAN DRAINAGE SYSTEMS BASED ON DATA-DRIVEN AND MECHANISM-DRIVEN METHOD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 204-211,225. doi: 10.13205/j.hjgc.202206026
    [16]DONG Hao, SUN Lin, OUYANG Feng. PREDICTION OF PM2.5 CONCENTRATION BASED ON INFORMER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 48-54,62. doi: 10.13205/j.hjgc.202206006
    [17]WU Yuxing, WANG Xiaodong, CHEN Ning, YANG Benliang, YAN Tingliang, HUANG Qing. FULL-SCALE STUDY OF AN INTELLIGENT CARBON DOSING CONTROL SYSTEM IN A TYPICAL URBAN WASTEWATER TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 212-218,271. doi: 10.13205/j.hjgc.202206027
    [18]LU Yao, YANG Jie, SHAO Zhi-juan, ZHU Cong-cong. PM2.5 ROBUST PREDICTION BASED ON STAGED TEMPORAL ATTENTION NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 93-100. doi: 10.13205/j.hjgc.202110013
    [19]HUANG Chun-tao, FAN Dong-ping, LU Ji-fu, LIAO Qi-feng. PREDICTION OF PM2.5 AND PM10 CONCENTRATION IN GUANGZHOU BASED ON DEEP LEARNING MODEL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 135-140. doi: 10.13205/j.hjgc.202112020
    [20]YU Shen-ting, LIU Ping. LONG SHORT-TERM MEMORY-CONVOLUTION NEURAL NETWORK (LSTM-CNN) FOR PREDICTION OF PM2.5 CONCENTRATION IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 176-180,66. doi: 10.13205/j.hjgc.202006029
  • Cited by

    Periodical cited type(3)

    1. 黄学平,辛攀,吴永明,吴留兴,邓觅,姚忠. 融合残差与VMD-TCN-BiLSTM混合网络的鄱阳湖总氮预测. 长江科学院院报. 2025(03): 59-67+75 .
    2. 李世忠,满奕,何正磊. 基于DNN-LSTM的造纸废水处理过程温室气体排放分析模型. 中国造纸. 2024(04): 170-176 .
    3. 陈亚松,邱勇,柳蒙蒙,刘萌萌,刘雪洁,田宇心,黄霞. 污水处理软测量仪表研究进展与应用. 工业仪表与自动化装置. 2024(03): 60-67+88 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.7 %FULLTEXT: 10.7 %META: 85.7 %META: 85.7 %PDF: 3.7 %PDF: 3.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 24.2 %其他: 24.2 %其他: 0.3 %其他: 0.3 %上海: 2.5 %上海: 2.5 %东莞: 1.7 %东莞: 1.7 %保定: 0.3 %保定: 0.3 %兰州: 0.6 %兰州: 0.6 %北京: 6.2 %北京: 6.2 %南京: 0.8 %南京: 0.8 %南宁: 1.4 %南宁: 1.4 %南昌: 0.6 %南昌: 0.6 %南通: 0.3 %南通: 0.3 %台州: 0.8 %台州: 0.8 %合肥: 0.8 %合肥: 0.8 %唐山: 0.6 %唐山: 0.6 %喀什: 1.4 %喀什: 1.4 %嘉兴: 0.3 %嘉兴: 0.3 %夏延: 0.3 %夏延: 0.3 %大同: 0.6 %大同: 0.6 %天津: 3.4 %天津: 3.4 %太原: 0.3 %太原: 0.3 %宁波: 0.3 %宁波: 0.3 %宜春: 0.8 %宜春: 0.8 %宣城: 0.3 %宣城: 0.3 %宿州: 0.3 %宿州: 0.3 %宿迁: 0.3 %宿迁: 0.3 %巴音郭楞: 0.3 %巴音郭楞: 0.3 %常州: 1.4 %常州: 1.4 %常德: 0.3 %常德: 0.3 %广州: 0.6 %广州: 0.6 %弗吉: 0.6 %弗吉: 0.6 %张家口: 2.5 %张家口: 2.5 %成都: 1.4 %成都: 1.4 %扬州: 2.8 %扬州: 2.8 %无锡: 1.4 %无锡: 1.4 %昆明: 0.8 %昆明: 0.8 %晋城: 0.3 %晋城: 0.3 %杭州: 4.2 %杭州: 4.2 %柳州: 0.3 %柳州: 0.3 %桂林: 0.8 %桂林: 0.8 %武汉: 1.7 %武汉: 1.7 %沈阳: 0.8 %沈阳: 0.8 %济宁: 0.3 %济宁: 0.3 %深圳: 0.3 %深圳: 0.3 %温州: 0.6 %温州: 0.6 %湖州: 2.2 %湖州: 2.2 %漯河: 3.7 %漯河: 3.7 %潜江: 0.3 %潜江: 0.3 %石家庄: 0.6 %石家庄: 0.6 %绵阳: 0.3 %绵阳: 0.3 %芒廷维尤: 9.0 %芒廷维尤: 9.0 %芝加哥: 3.9 %芝加哥: 3.9 %蒙哥马利: 0.6 %蒙哥马利: 0.6 %衡阳: 0.6 %衡阳: 0.6 %衢州: 0.6 %衢州: 0.6 %西宁: 3.7 %西宁: 3.7 %西安: 0.3 %西安: 0.3 %贵阳: 0.3 %贵阳: 0.3 %运城: 1.1 %运城: 1.1 %遵义: 0.3 %遵义: 0.3 %郑州: 0.3 %郑州: 0.3 %重庆: 0.8 %重庆: 0.8 %长沙: 0.6 %长沙: 0.6 %青岛: 0.6 %青岛: 0.6 %其他其他上海东莞保定兰州北京南京南宁南昌南通台州合肥唐山喀什嘉兴夏延大同天津太原宁波宜春宣城宿州宿迁巴音郭楞常州常德广州弗吉张家口成都扬州无锡昆明晋城杭州柳州桂林武汉沈阳济宁深圳温州湖州漯河潜江石家庄绵阳芒廷维尤芝加哥蒙哥马利衡阳衢州西宁西安贵阳运城遵义郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (53) PDF downloads(1) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return