Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIU Yiwei, LI Benhang, WEI Zizhang, LIU Xiaoyao, HE Xu, LIANG Gaolei, MA Xiaodong. PREPARATION AND LOW-TEMPERATURE DENITRIFICATION PROPERTIES OF Mn-DOPED POROUS CAROBON MATRIX COMPOSITE FUNCTIONAL MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 112-120. doi: 10.13205/j.hjgc.202410014
Citation: LIU Yiwei, LI Benhang, WEI Zizhang, LIU Xiaoyao, HE Xu, LIANG Gaolei, MA Xiaodong. PREPARATION AND LOW-TEMPERATURE DENITRIFICATION PROPERTIES OF Mn-DOPED POROUS CAROBON MATRIX COMPOSITE FUNCTIONAL MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 112-120. doi: 10.13205/j.hjgc.202410014

PREPARATION AND LOW-TEMPERATURE DENITRIFICATION PROPERTIES OF Mn-DOPED POROUS CAROBON MATRIX COMPOSITE FUNCTIONAL MATERIALS

doi: 10.13205/j.hjgc.202410014
  • Received Date: 2024-01-25
    Available Online: 2024-11-30
  • Under the background of "Dual Carbon Goal", the preparation of biochar using biomass as the raw material instead of coal-based carbon for low-temperature denitrification of sintering flue gas in iron and steel industry has become a research hotspot. In this paper, using biomass as raw material, the effects of nitric acid oxidation, Mn doping amount, binder addition and activation conditions on material properties were investigated through single-factor experiments, and Mn-doped porous carbon matrix composite functional materials with the required mechanical strength, high denitrification efficiency and good catalytic stability were prepared. Moreover, the structure-activity relationship between material composition, structure and low-temperature denitrification activity was initially explored through a series of characterization. The results showed that the composite functional material with the best comprehensive properties was obtained by doping the active component Mn with the addition of mixed binder and water vapor activation. The steady-state removal rate of NO at low temperature (120 ℃) was 66.4%, which was about 7 times that of the coal-based activated carbon. The denitrification activity was also significantly higher than that of coal-based activated carbon under simulated wet flue gas conditions. The research results provide a new idea for the low-temperature SCR denitrification of sintering flue gas in iron and steel industry.
  • [1]
    GUO Z, LIN B, HUANG Y, et al. Design of bimetallic catalyst with dual-functional Cu-Ce sites for synergistic NO<em>x and toluene abatement[J]. Applied Catalysis B: Environmental, 2024, 342: 123430.
    [2]
    SONG I, LEE H, JEON S W, et al. Simple physical mixing of zeolite prevents sulfur deactivation of vanadia catalysts for NO<em>x removal[J]. Nature Communications, 2021, 12(1): 901.
    [3]
    MA Y, ZHANG D, SUN H, et al. Fe-Ce mixed oxides supported on carbon nanotubes for simultaneous removal of NO and HgO in flue gas[J]. Industrial & Engineering Chemistry Research, 2018, 57(9): 3187-3194.
    [4]
    解强, 张香兰, 梁鼎成, 等. 煤基活性炭定向制备:原理·方法·应用[J]. 煤炭科学技术, 2021, 49(1): 28.
    [5]
    张福新, 白锋堂. 中长期煤炭消费碳排放与二氧化碳排放值预测[J]. 中国煤炭, 2022, 48(4): 36-40.
    [6]
    周茂军, 张代华. 宝钢烧结烟气超低排放技术集成与实践[J]. 钢铁, 2020, 55(2): 144-151.
    [7]
    JIANG L J, LIU Q C, ZHAO Q, et al. Promotional effect of Ce on the SCR of NO with NH3 at low temperature over MnO<em>x supported by nitric acid-modified activated carbon[J]. Research on Chemical Intermediates, 2018, 44(3): 1729-1744.
    [8]
    陈薇, 肖高, 郭杰, 等. 煤基活性炭表面改性对稀土负载型CeO2/AC低温脱硝性能的影响[J]. 环境工程学报, 2018, 12(7): 9.
    [9]
    YANG J, REN S, ZHANG T S, et al. Iron doped effects on active sites formation over activated carbon supported Mn-Ce oxide catalysts for low-temperature SCR of NO[J]. Chemical Engineering Journal, 2020, 379: 122398.
    [10]
    吴海苗, 王晓波, 归柯庭. 以活性炭为载体的负载型催化剂的SCR脱硝性能[J]. 东南大学学报:自然科学版, 2013, 43(4): 5.
    [11]
    HE G, GAO M, PENG Y, et al. Superior oxidative dehydrogenation performance toward NH3 determines the excellent low-temperature NH3-SCR activity of Mn-based catalysts[J]. Environmental Science & Technology, 2021, 55, 10: 6995-7003.
    [12]
    李芬, 李梁, 杨莹, 等. 稻草活性炭的成型及其对H2S的吸附性能[J]. 环境工程学报, 2017, 11(4): 2350-2354.
    [13]
    蒋恩臣, 卢爽, 张伟, 等. 粘结剂对生物质炭基尿素微观结构和性能影响的研究[J]. 可再生能源, 2017, 35(10): 1437-1442.
    [14]
    山西新华化工有限责任公司, 中国科学院山西煤炭化学研究所. 脱硫脱硝用煤质颗粒活性炭试验方法 第5部分:脱硝率[Z]. 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2013: 8.
    [15]
    LI X, SUN F, QU Z, et al. Insight into synergistic effects of oxygen and nitrogen dual-dopants in carbon catalysts on selective catalytic reduction of NO<em>x with NH3: a combined computational and experimental verification[J]. Chemical Engineering Journal, 2023, 454: 140098.
    [16]
    侯彩霞, 孔碧华, 樊丽华, 等. 硝酸改性无灰煤基多孔炭电极材料的制备[J]. 功能材料. 2018, 49(5): 5137-5144.
    [17]
    SUN F, YANG C, QU Z, et al. Inexpensive activated coke electrocatalyst for high-efficiency hydrogen peroxide production: coupling effects of amorphous carbon cluster and oxygen dopant[J]. Applied Catalysis B: Environmental, 2021, 286: 119860.
    [18]
    HUANG F, LI D, WANG L, et al. Rational introduction of nitridizing agent to hydrothermal carbonization for enhancing CO2 capture performance of tobacco stalk-based porous carbons[J]. Journal of Analytical and Applied Pyrolysis, 2021, 157: 105047.
    [19]
    WANG Y, PENG W, WANG J, et al. Sulfamethoxazole degradation by regulating active sites on distilled spirits lees-derived biochar in a continuous flow fixed bed peroxymonosulfate reactor[J]. Applied Catalysis B: Environmental, 2022, 310: 121342.
    [20]
    XIE Z, LYU Z, WANG J, et al. Ultrafine-Mn2O3@N-doped porous carbon hybrids derived from Mn-MOFs: dual-reaction centre catalyst with singlet oxygen-dominant oxidation process[J]. Chemical Engineering Journal, 2022, 429: 132299.
    [21]
    GE Z, CHEN X, ZHANG X, et al. Porous MnO/pitch carbon composite as an anode material for low-cost and high-performance lithium-ion battery[J]. Chemical Engineering Science, 2024, 285: 119625.
    [22]
    WANG L, HUANG B, SU Y, et al. Manganese oxides supported on multi-walled carbon nanotubes for selective catalytic reduction of NO with NH3: catalytic activity and characterization[J]. Chemical Engineering Journal, 2012, 192: 232-241.
    [23]
    EFIMOV M N, MURATOV D G, KLYUEV A L, et al. Ultrasonic treatment duration: a nuanced parameter in synthesis affecting structural properties and ORR performance of KOH-activated carbon[J]. Diamond and Related Materials, 2024, 142: 110804.
    [24]
    DONOHUE M D, ARANOVICH G L. Classification of Gibbs adsorption isotherms[J]. Advances in Colloid and Interface Science, 1998, 76/77: 137-152.
    [25]
    邵远超, 田华宇, 王国睿, 等. 低灰分刺竹炭制备及性能表征[J]. 林业工程学报, 2023, 8(1): 80-87.
    [26]
    LI H X, JIN L Y, ZHANG A C, et al. Investigation of Co-doped Mn oxide catalyst for NH3-SCR activity and SO2/H2O resistance[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1404-1416.
    [27]
    FENG X, LIU S, YUE K, et al. Insight into the promotional effect of Mn-modified nitrogenous biochar on the NH3-SCR denitrification activity at low temperatures[J]. Energy, 2023, 285: 129323.
    [28]
    XIA Y, YANG Y, CHEN Z, et al. Boosting the low-temperature NH3-SCR performance via metals co-doping with inequality Mn/Ce ratios in the carbon-based catalyst prepared by Cr-containing leather waste[J]. Molecular Catalysis, 2023, 551: 113615.
  • Relative Articles

    [1]JIN Yu, ZHENG Dapeng, WANG Yaocheng, DONG Zhijun. EVALUATION OF ENVIRONMENTAL AND ECONOMIC POTENTIAL OF COMPOSITE CEMENT MADE OF MUNICIPAL CONSTRUCTION AND DEMOLITION WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 225-232. doi: 10.13205/j.hjgc.202404026
    [2]XU Changqing, LENG Linyuan, CHEN Zhengxia, JIA Haifeng. LIFE-CYCLE ENVIRONMENTAL AND ECONOMIC BENEFITS ASSESSMENT OF SOURCE CONTROL FACILITIES FOR SPONGE CITY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 144-149. doi: 10.13205/j.hjgc.202401019
    [3]SHI En, ZHANG Shuai, ZHANG Miao, LIU Shasha, ZOU Yuliang, ZHANG Xiangzhi. ENVIRONMENTAL IMPACT ASSESSMENT OF SLUDGE-BASED ACTIVATED CARBON PREPARATION PROCESS BASED ON LIFE CYCLE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 40-47. doi: 10.13205/j.hjgc.202402005
    [4]YE Ning, LU Hao, SHI Chen, LÜ Yizheng, QIAN Yisen, TIAN Jinping, ZHANG Suyi, HU Yongqi, LEI Xiangyun, CHEN Lüjun. UNCOVERING LIFE CYCLE ENVIRONMENTAL IMPACTS OF NEW PROCESSES ON RESOURCES AND ENERGY RECOVERY OF BAIJIU DISTILLER’S GRAINS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 135-143. doi: 10.13205/j.hjgc.202401018
    [5]ZHANG Xiaoyan, WANG Zhi, LI Zhiyu, LI Jian, YAN Beibei, ZUO Xiaoyu, YANG Gaixiu, TAO Junyu, CHEN Guanyi. ENVIRONMENTAL IMPACT ASSESSMENT ON FUEL GAS PRODUCTION FROM DISTILLER’S GRAINS BY ANAEROBIC DIGESTION COUPLED WITH GASIFICATION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 63-71. doi: 10.13205/j.hjgc.202401009
    [6]WANG Tao, YUE Bo, MENG Bangbang, LIU Bo, GAO Hong. A LIFE CYCLE ASSESSMENT OF SECONDARY COPPER PRODUCTION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 225-232. doi: 10.13205/j.hjgc.202407025
    [7]ZHANG Jiwen, XU Zunzhu, ZHANG Yuwei, CHEN Yuqi, JIN Xiaoxian, LIU Dong, LU Zhaoyang. LIFE CYCLE ASSESSMENT OF COORDINATED TREATMENT OF WASTE GAS POLLUTION AND CARBON REDUCTION IN ANAEROBIC POND IN A PHARMACEUTICAL FACTORY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 192-201. doi: 10.13205/j.hjgc.202303026
    [8]QUAN Zhaoxi, CHEN Xiangsheng, CHEN Feng, GAO Wang, HAN Wenlong. ANALYSIS OF CARBON REDUCTION EFFECT OF TUNNEL CONSTRUCTION MUCK SOIL UTILIZATION BASED ON LIFE CYCLE ASSESSMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 91-98,162. doi: 10.13205/j.hjgc.202310012
    [9]LIAO Chengfeng, LIU Yuchen, TANG Yuting, TANG Jiehong, MA Xiaoqian. LIFE CYCLE ASSESSMENT AND TECHNO-ECONOMIC ANALYSIS OF PRODUCING AMMONIA BY ALGAL BIOMASS GASIFICATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 187-194. doi: 10.13205/j.hjgc.202305025
    [10]LIAO Ziying, ZHANG Huanjun, HAN Shuguang, PAN Zhengguo, LI Yi. LIFE CYCLE ASSESSMENT OF TYPICAL CYANOBACTERIA TREATMENT EQUIPMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 143-150. doi: 10.13205/j.hjgc.202306019
    [11]LI Haiping, REN Shuai, JIN Min. ESTIMATION OF POTENTIAL MINERAL RESOURCE DEPOSITS IN RESIDENCE BUILDINGS OF HUILONGGUAN COMMUNITY IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 183-191. doi: 10.13205/j.hjgc.202210025
    [12]SU Yue-huan, ZHANG Yu, DUAN Hua-bo, LI Qiang-feng. RESEARCH ON ENVIRONMENTAL IMPACT ASSESSMENT AND EMISSION REDUCTION POTENTIAL OF METRO CONSTRUCTION: A CASE STUDY IN SHENZHEN, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 184-192,236. doi: 10.13205/j.hjgc.202205027
    [13]CHEN Kunyang, WANG Jiayuan, YU Bo, DUAN Huabo, WU Huanyu. ENVIRONMENTAL IMPACT EVALUATION OF RESIDUAL MUD FROM SUBWAY ENGINEERING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 191-198. doi: 10.13205/j.hjgc.202202029
    [14]WANG Jiaqi, DAI Chengna, YU Gangqiang, WU Bin, LIU Ning, XU Ruinian, WANG Ning, CHEN Biaohua. TECHNO-ENVIRONMENTAL ASSESSMENT IN NATURAL GAS DEHYDRATION WITH IMIDAZOLIUM-BASED IONIC LIQUIDS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 199-210. doi: 10.13205/j.hjgc.202211028
    [15]JIE Chao, WANG Si-si, LÜ Bin. ENVIRONMENTAL IMPACT ANALYSIS OF PERMEABLE CEMENT CONCRETE PAVEMENT IN BEIJING BASED ON LIFE CYCLE ASSESSMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 118-125. doi: 10.13205/j.hjgc.202209016
    [16]LIU Hang-yi, YAN Bei-bei, LIN Fa-wei, WANG Yuan, WANG Xu-tong, CHEN Guan-yi. COMPARATIVE ANALYSIS OF TWO KINDS OF FOOD WASTE RECYCLING SCHEMES FROM THE PERSPECTIVE OF LCA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 169-175. doi: 10.13205/j.hjgc.202109024
    [17]XIE Chao, LV Bin, WANG Si-si, WANG Pei-jun. REVIEW ON RESOURCE AND ENVIRONMENTAL IMPACT ASSESSMENT OF PERMEABLE PAVEMENT BASED ON LIFE CYCLE THINKING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 197-202,44. doi: 10.13205/j.hjgc.202108027
    [18]LIU Yu-tong, ZHANG Yun, HOU Hao-chen, GAO Qiu-feng, XU Xiao-zhu. LIFE CYCLE ASSESSMENT OF HIGH PURITY MAGNESIUM PRODUCTION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 187-191. doi: 10.13205/j.hjgc.202106028
    [19]ZHAO Kun, LI Ruo-hua, CHENG Wen-long, YANG Yuan-ping, YUE Shu-bo. NUMERICAL SIMULATION STUDY ON ENVIRONMENTAL IMPACT OF SEWAGE DISCHARGE ON ESTUARY WATER FUNCTIONAL AREA[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 33-40. doi: 10.13205/j.hjgc.202010006
  • Cited by

    Periodical cited type(13)

    1. 钟晓梅,宋丹丹,金晶,褚兴飞,王庆,王殿二. 注入式可渗透反应墙治理六价铬污染地下水工程设计实例分析. 广东化工. 2025(04): 100-102+93 .
    2. 严芳敏,郭明帅,王菲. 炭铁材料修复三氯乙烯污染地下水的性能. 中国环境科学. 2024(02): 825-831 .
    3. 夏文彬,熊思敏,刘广义,陈伟. 可渗透反应墙除砷的研究进展与展望. 环境化学. 2024(03): 895-910 .
    4. 江杰,王树飞,苏建,廖长君,罗豪豪,陈俊霖. 固废基PRB复合颗粒填料对Cd~(2+)的吸附特性及净化机制. 中国有色金属学报. 2024(06): 2112-2126 .
    5. 江杰,王树飞,罗豪豪,苏建,曹斐姝,廖长君,陈俊霖. PRB颗粒填料对Cd~(2+)的吸附特征及其孔隙结构动态演变规律. 中南大学学报(自然科学版). 2024(07): 2504-2515 .
    6. 钟晓梅,褚兴飞,姜翠萍,宋丹丹,顾鑫峰,王殿二. 可渗透反应墙技术系统设计研究. 广东化工. 2024(18): 110-112+126 .
    7. 张强,潘超超,孔殿超,董献彬,张勋,张青. 生物可渗透反应墙修复技术研究进展. 绿色科技. 2024(16): 182-187+192 .
    8. 彭星,高燕,刘站,孙红卫,张礼知,申文娟. 羧甲基纤维素化零价铁除镍效能. 环境科学学报. 2024(10): 279-287 .
    9. 刘恒毅,李蕾,胡雅迪,叶文杰,刘国涛,彭绪亚. 新型生物可渗透反应屏障技术修复简易填埋场壤中流. 环境工程学报. 2024(09): 2500-2511 .
    10. 李向东,杜雪虹,董佳甜. PRB处理酸性矿山废水的地球化学反应模拟研究. 煤炭学报. 2023(03): 1345-1352 .
    11. 徐慧超,乔华艺,赵勇胜,张慧. 零价铁基可渗透反应墙技术治理Cr(Ⅵ)污染地下水的研究进展. 安全与环境学报. 2023(11): 4143-4151 .
    12. 张希,冯悦峰,李正斌,李杰,戴建军,刘福强. 可渗透反应墙技术修复重金属污染地下水的发展与展望. 离子交换与吸附. 2022(03): 269-283 .
    13. 董佳甜,杜雪虹,李向东. PRB处理酸性矿山废水及填料堵塞过程. 有色金属(冶炼部分). 2022(11): 126-133 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.0 %FULLTEXT: 12.0 %META: 87.0 %META: 87.0 %PDF: 0.9 %PDF: 0.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.7 %其他: 15.7 %Central District: 0.3 %Central District: 0.3 %China: 0.3 %China: 0.3 %三门峡: 0.3 %三门峡: 0.3 %上海: 0.9 %上海: 0.9 %东莞: 0.3 %东莞: 0.3 %临汾: 0.3 %临汾: 0.3 %丽水: 0.3 %丽水: 0.3 %六安: 0.3 %六安: 0.3 %北京: 3.9 %北京: 3.9 %十堰: 0.3 %十堰: 0.3 %南京: 0.3 %南京: 0.3 %南昌: 0.3 %南昌: 0.3 %南通: 0.3 %南通: 0.3 %台州: 1.8 %台州: 1.8 %哈密: 0.6 %哈密: 0.6 %嘉兴: 0.9 %嘉兴: 0.9 %天津: 3.3 %天津: 3.3 %太原: 0.3 %太原: 0.3 %宣城: 0.6 %宣城: 0.6 %宿州: 0.3 %宿州: 0.3 %常州: 0.3 %常州: 0.3 %常德: 0.6 %常德: 0.6 %张家口: 0.6 %张家口: 0.6 %成都: 0.3 %成都: 0.3 %扬州: 2.1 %扬州: 2.1 %新加坡: 0.9 %新加坡: 0.9 %昆明: 0.3 %昆明: 0.3 %晋城: 0.6 %晋城: 0.6 %朝阳: 0.3 %朝阳: 0.3 %杭州: 1.8 %杭州: 1.8 %武汉: 0.9 %武汉: 0.9 %济南: 0.3 %济南: 0.3 %济源: 0.3 %济源: 0.3 %深圳: 0.3 %深圳: 0.3 %温州: 1.5 %温州: 1.5 %湖州: 0.9 %湖州: 0.9 %漯河: 9.3 %漯河: 9.3 %烟台: 0.3 %烟台: 0.3 %焦作: 0.9 %焦作: 0.9 %福州: 0.3 %福州: 0.3 %舟山: 0.3 %舟山: 0.3 %芒廷维尤: 21.7 %芒廷维尤: 21.7 %芝加哥: 3.0 %芝加哥: 3.0 %衢州: 0.9 %衢州: 0.9 %西宁: 9.3 %西宁: 9.3 %贵阳: 0.6 %贵阳: 0.6 %运城: 2.7 %运城: 2.7 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.6 %邯郸: 0.6 %郑州: 0.9 %郑州: 0.9 %长沙: 3.0 %长沙: 3.0 %香港: 2.1 %香港: 2.1 %其他Central DistrictChina三门峡上海东莞临汾丽水六安北京十堰南京南昌南通台州哈密嘉兴天津太原宣城宿州常州常德张家口成都扬州新加坡昆明晋城朝阳杭州武汉济南济源深圳温州湖州漯河烟台焦作福州舟山芒廷维尤芝加哥衢州西宁贵阳运城遵义邯郸郑州长沙香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (52) PDF downloads(2) Cited by(20)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return