Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Wang Peng Wang Xiaofeng Wu Guiwu, . RESEARCH ON GROUNDWATER POLLUTION IN AN INDUSTRIAL SITE IN THE UPPERCAMBRIAN STRATA[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(6): 35-38. doi: 10.13205/j.hjgc.201506008
Citation: LIU Yiwei, LI Benhang, WEI Zizhang, LIU Xiaoyao, HE Xu, LIANG Gaolei, MA Xiaodong. PREPARATION AND LOW-TEMPERATURE DENITRIFICATION PROPERTIES OF Mn-DOPED POROUS CAROBON MATRIX COMPOSITE FUNCTIONAL MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 112-120. doi: 10.13205/j.hjgc.202410014

PREPARATION AND LOW-TEMPERATURE DENITRIFICATION PROPERTIES OF Mn-DOPED POROUS CAROBON MATRIX COMPOSITE FUNCTIONAL MATERIALS

doi: 10.13205/j.hjgc.202410014
  • Received Date: 2024-01-25
    Available Online: 2024-11-30
  • Under the background of "Dual Carbon Goal", the preparation of biochar using biomass as the raw material instead of coal-based carbon for low-temperature denitrification of sintering flue gas in iron and steel industry has become a research hotspot. In this paper, using biomass as raw material, the effects of nitric acid oxidation, Mn doping amount, binder addition and activation conditions on material properties were investigated through single-factor experiments, and Mn-doped porous carbon matrix composite functional materials with the required mechanical strength, high denitrification efficiency and good catalytic stability were prepared. Moreover, the structure-activity relationship between material composition, structure and low-temperature denitrification activity was initially explored through a series of characterization. The results showed that the composite functional material with the best comprehensive properties was obtained by doping the active component Mn with the addition of mixed binder and water vapor activation. The steady-state removal rate of NO at low temperature (120 ℃) was 66.4%, which was about 7 times that of the coal-based activated carbon. The denitrification activity was also significantly higher than that of coal-based activated carbon under simulated wet flue gas conditions. The research results provide a new idea for the low-temperature SCR denitrification of sintering flue gas in iron and steel industry.
  • [1]
    GUO Z, LIN B, HUANG Y, et al. Design of bimetallic catalyst with dual-functional Cu-Ce sites for synergistic NO<em>x and toluene abatement[J]. Applied Catalysis B: Environmental, 2024, 342: 123430.
    [2]
    SONG I, LEE H, JEON S W, et al. Simple physical mixing of zeolite prevents sulfur deactivation of vanadia catalysts for NO<em>x removal[J]. Nature Communications, 2021, 12(1): 901.
    [3]
    MA Y, ZHANG D, SUN H, et al. Fe-Ce mixed oxides supported on carbon nanotubes for simultaneous removal of NO and HgO in flue gas[J]. Industrial & Engineering Chemistry Research, 2018, 57(9): 3187-3194.
    [4]
    解强, 张香兰, 梁鼎成, 等. 煤基活性炭定向制备:原理·方法·应用[J]. 煤炭科学技术, 2021, 49(1): 28.
    [5]
    张福新, 白锋堂. 中长期煤炭消费碳排放与二氧化碳排放值预测[J]. 中国煤炭, 2022, 48(4): 36-40.
    [6]
    周茂军, 张代华. 宝钢烧结烟气超低排放技术集成与实践[J]. 钢铁, 2020, 55(2): 144-151.
    [7]
    JIANG L J, LIU Q C, ZHAO Q, et al. Promotional effect of Ce on the SCR of NO with NH3 at low temperature over MnO<em>x supported by nitric acid-modified activated carbon[J]. Research on Chemical Intermediates, 2018, 44(3): 1729-1744.
    [8]
    陈薇, 肖高, 郭杰, 等. 煤基活性炭表面改性对稀土负载型CeO2/AC低温脱硝性能的影响[J]. 环境工程学报, 2018, 12(7): 9.
    [9]
    YANG J, REN S, ZHANG T S, et al. Iron doped effects on active sites formation over activated carbon supported Mn-Ce oxide catalysts for low-temperature SCR of NO[J]. Chemical Engineering Journal, 2020, 379: 122398.
    [10]
    吴海苗, 王晓波, 归柯庭. 以活性炭为载体的负载型催化剂的SCR脱硝性能[J]. 东南大学学报:自然科学版, 2013, 43(4): 5.
    [11]
    HE G, GAO M, PENG Y, et al. Superior oxidative dehydrogenation performance toward NH3 determines the excellent low-temperature NH3-SCR activity of Mn-based catalysts[J]. Environmental Science & Technology, 2021, 55, 10: 6995-7003.
    [12]
    李芬, 李梁, 杨莹, 等. 稻草活性炭的成型及其对H2S的吸附性能[J]. 环境工程学报, 2017, 11(4): 2350-2354.
    [13]
    蒋恩臣, 卢爽, 张伟, 等. 粘结剂对生物质炭基尿素微观结构和性能影响的研究[J]. 可再生能源, 2017, 35(10): 1437-1442.
    [14]
    山西新华化工有限责任公司, 中国科学院山西煤炭化学研究所. 脱硫脱硝用煤质颗粒活性炭试验方法 第5部分:脱硝率[Z]. 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2013: 8.
    [15]
    LI X, SUN F, QU Z, et al. Insight into synergistic effects of oxygen and nitrogen dual-dopants in carbon catalysts on selective catalytic reduction of NO<em>x with NH3: a combined computational and experimental verification[J]. Chemical Engineering Journal, 2023, 454: 140098.
    [16]
    侯彩霞, 孔碧华, 樊丽华, 等. 硝酸改性无灰煤基多孔炭电极材料的制备[J]. 功能材料. 2018, 49(5): 5137-5144.
    [17]
    SUN F, YANG C, QU Z, et al. Inexpensive activated coke electrocatalyst for high-efficiency hydrogen peroxide production: coupling effects of amorphous carbon cluster and oxygen dopant[J]. Applied Catalysis B: Environmental, 2021, 286: 119860.
    [18]
    HUANG F, LI D, WANG L, et al. Rational introduction of nitridizing agent to hydrothermal carbonization for enhancing CO2 capture performance of tobacco stalk-based porous carbons[J]. Journal of Analytical and Applied Pyrolysis, 2021, 157: 105047.
    [19]
    WANG Y, PENG W, WANG J, et al. Sulfamethoxazole degradation by regulating active sites on distilled spirits lees-derived biochar in a continuous flow fixed bed peroxymonosulfate reactor[J]. Applied Catalysis B: Environmental, 2022, 310: 121342.
    [20]
    XIE Z, LYU Z, WANG J, et al. Ultrafine-Mn2O3@N-doped porous carbon hybrids derived from Mn-MOFs: dual-reaction centre catalyst with singlet oxygen-dominant oxidation process[J]. Chemical Engineering Journal, 2022, 429: 132299.
    [21]
    GE Z, CHEN X, ZHANG X, et al. Porous MnO/pitch carbon composite as an anode material for low-cost and high-performance lithium-ion battery[J]. Chemical Engineering Science, 2024, 285: 119625.
    [22]
    WANG L, HUANG B, SU Y, et al. Manganese oxides supported on multi-walled carbon nanotubes for selective catalytic reduction of NO with NH3: catalytic activity and characterization[J]. Chemical Engineering Journal, 2012, 192: 232-241.
    [23]
    EFIMOV M N, MURATOV D G, KLYUEV A L, et al. Ultrasonic treatment duration: a nuanced parameter in synthesis affecting structural properties and ORR performance of KOH-activated carbon[J]. Diamond and Related Materials, 2024, 142: 110804.
    [24]
    DONOHUE M D, ARANOVICH G L. Classification of Gibbs adsorption isotherms[J]. Advances in Colloid and Interface Science, 1998, 76/77: 137-152.
    [25]
    邵远超, 田华宇, 王国睿, 等. 低灰分刺竹炭制备及性能表征[J]. 林业工程学报, 2023, 8(1): 80-87.
    [26]
    LI H X, JIN L Y, ZHANG A C, et al. Investigation of Co-doped Mn oxide catalyst for NH3-SCR activity and SO2/H2O resistance[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1404-1416.
    [27]
    FENG X, LIU S, YUE K, et al. Insight into the promotional effect of Mn-modified nitrogenous biochar on the NH3-SCR denitrification activity at low temperatures[J]. Energy, 2023, 285: 129323.
    [28]
    XIA Y, YANG Y, CHEN Z, et al. Boosting the low-temperature NH3-SCR performance via metals co-doping with inequality Mn/Ce ratios in the carbon-based catalyst prepared by Cr-containing leather waste[J]. Molecular Catalysis, 2023, 551: 113615.
  • Relative Articles

    [1]LI Qingpo, PENG Jianping, LIU Xingjian, WANG Yaowu, DI Yuezhong. Carbon emission analysis of primary aluminum production in China based on energy consumption[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 21-30. doi: 10.13205/j.hjgc.202501003
    [2]DU Jiamin, WEI Yuanyuan, DING Chao, ZHU Haochuan, LIU Weijing, TANG Baiyang, YANG Shiyao, FENG Qian. RESEARCH ON LAYOUT OF INTERCEPTION COMBINED SEWER OVERFLOW DETENTION TANKS BASED ON THEIR LIFE CYCLE CARBON EMISSIONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 50-60. doi: 10.13205/j.hjgc.202411006
    [3]GANG Qinyan, MA Xiaoqian, LIU Chao, WANG Han, WANG Yayi. RESEARCH ON CARBON EMISSION CHARACTERISTICS OF MUNICIPAL SOLID WASTE INCINERATION LEACHATE TREATMENT SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 31-39. doi: 10.13205/j.hjgc.202404004
    [4]WANG Hang, WANG Xiankai, CHEN Xiang, LI Kun, QIAO Xueyuan, LIU Feng, DONG Bin. CARBON EMISSION ANALYSIS OF COLLABORATIVE TREATMENT OF MUNICIPAL ORGANIC SOLID WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 66-72. doi: 10.13205/j.hjgc.202402008
    [5]WU Yiqi, YIN Xiaoqing. STUDY ON STANDARDS ON CARBON EMISSION IN MUNICIPAL WATER SUPPLY AND DRAINAGE SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 146-152. doi: 10.13205/j.hjgc.202411016
    [6]WANG Ning, HAN Chengyu, ZHANG Yang, GU Zhaolin. REGIONAL CARBON EMISSION PEAKING BASED ON THRESHOLD-STIRPAT EXTENSION MODEL: A CASE STUDY ON EAST CHINA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 154-162. doi: 10.13205/j.hjgc.202405020
    [7]CHEN Chen, LI Wei, ZHAI Mengyu, BAO Zhe, WANG Zhenyu, ZHU Liangliang. IMPACT OF INTER-REGIONAL TRADE ON SHANGHAI’S ENERGY-RELATED CARBON EMISSIONS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 245-252,259. doi: 10.13205/j.hjgc.202310028
    [8]MA Tao, GUO Yuehua, WANG Weiwei, CAO Jingguo. CARBON EMISSION CALCULATION AND ANALYSIS FOR CURED-IN-PLACE REHABILITATION OF URBAN DRAINAGE PIPELINE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 54-58,63. doi: 10.13205/j.hjgc.202311011
    [9]LI Jianyuan, SUN Yunan, HUANG Jiale, CHEN Qijing, JIA Yue, GAO Yule, CHENG Zhanjun, YAN Beibei, CHEN Guanyi. CARBON EMISSION ANALYSIS OF WASTE BIODEGRADABLE PLASTICS BY DIFFERENT DISPOSAL TECHNOLOGIES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 124-132. doi: 10.13205/j.hjgc.202309015
    [10]REN Hongyang, DU Ruolan, XIE Guilin, JIN Wenhui, LI Xi, DENG Yuanpeng, MA Wei, WANG Bing. RESEARCH STATUS OF INFLUENCING FACTORS AND IDENTIFICATION METHODS OF CARBON EMISSIONS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 195-203,244. doi: 10.13205/j.hjgc.202310023
    [11]WANG Shuo, LU Yunping, LIU Shuyang, CHEN Kangli. CARBON EMISSIONS OF URBAN AND INDUSTRIAL SEWAGE TREATMENT PLANTS OF SUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 173-184. doi: 10.13205/j.hjgc.202310021
    [12]YU Jie, ZHANG Yong, LI Qingyao. DECOUPLING EFFECT AND DRIVING MECHANISM OF CARBON EMISSION REDUCTION IN MANUFACTURING INDUSTRY: A TWO-DIMENSIONAL ANALYSIS FRAMEWORK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 150-162. doi: 10.13205/j.hjgc.202310019
    [13]WU Qixian, XIE Xinyan, CHEN Yun, JIN Ziyi. ANALYSIS OF FACTORS INFLUENCING CARBON EMISSIONS OF URBAN RAIL TRANSIT PROJECTS BASED ON PARTIAL LEAST SQUARES STRUCTURAL EQUATION MODELING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 133-140. doi: 10.13205/j.hjgc.202310017
    [14]WANG Zhiqiang, LI Kehui, REN Jin'ge, ZHANG Qi. INFLUENTIAL FACTORS AND SCENARIO FORECAST OF CARBON EMISSIONS OF CONSTRUCTION INDUSTRY IN SHANDONG PROVINCE BASED ON LMDI-SD MODEL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 108-116. doi: 10.13205/j.hjgc.202310014
    [15]WANG Zhaoyue, ZHAO Xiaying, TANG Linhui, LIU Yu, CHENG Huiyu, PAN Yirong, YAN Xu, WANG Xu. RESEARCH ADVANCES IN CARBON EMISSION MONITORING AND ASSESSMENT OF URBAN DRAINAGE AND WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 77-82,161. doi: 10.13205/j.hjgc.202206010
    [16]ZHAO Gang, TANG Jianguo, XU Jingcheng, LUO Jingyang, JIANG Ming, YUAN Xianchen, ZHOU Chuanting. COMPARATIVE ANALYSIS ON ENERGY AND CARBON EMISSION OF TYPICAL SLUDGE TREATMENT PROJECTS IN CHINA AND THE UNITED STATES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 9-16. doi: 10.13205/j.hjgc.202212002
    [17]LUO Yuli, PAN Yirong, MA Jiaxin, WANG Jiayuan, LI Chunyao, CHEN Zhenpeng, WANG Xu. RESEARCH ADVANCES ON CARBON EMISSION OF WASTEWATER RESOURCE RECOVERY AND VALORIZATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 83-91,187. doi: 10.13205/j.hjgc.202206011
    [18]YANG Nan, LI Yan-xia, LV Chen, ZHAO Meng, LIU Zhong-liang, LIU Hao. CARBON EMISSION ACCOUNTING AND PEAK FORECASTING OF IRON & STEEL INDUSTRY IN TANGSHAN[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 44-52. doi: 10.13205/j.hjgc.202011008
    [19]Zhang Feng Yin Xiuqing Dong Huizhong, . APPLICATION OF COMBINATION GREY MODEL IN CARBON EMISSIONS PREDICTION IN SHANDONG PROVINCE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 147-152. doi: 10.13205/j.hjgc.201502033
    [20]STUDY OF CARBON EMISSION UNDER CHANGE IN LAND USE PATTERNS IN TAIHANG MOUNTAIN AREA OF HEBEI PROVINCE[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 133-135. doi: 10.13205/j.hjgc.201412024
  • Cited by

    Periodical cited type(6)

    1. 狄卫民,黄道银. 河南省能源消费碳排放分析与情景预测. 中国能源. 2024(Z1): 129-141 .
    2. 袁长伟,彭琛. 城市公交碳排放效率评价及驱动因素分析. 长安大学学报(自然科学版). 2024(04): 139-148 .
    3. 王昭,吴金卓. 东北三省交通行业碳排放脱钩状态及驱动因素分析. 交通科技与经济. 2024(05): 73-80 .
    4. 关同恩. “双碳”背景下西部地区交通运输发展机遇与挑战. 中国航务周刊. 2024(50): 57-59 .
    5. 张思远,甘京京,张任涛,徐晨烨,沈忱思,郭茹,钱琴芳,唐俊松,李方. 长三角生态绿色一体化发展示范区纺织行业碳排放驱动因素及其脱钩效应分析. 环境科学. 2024(12): 6796-6805 .
    6. 朱健齐,黄希颖,谭晓雯,张潇. 绿色低碳技术创新视角下影响城市经济增长与碳排放脱钩的因素和路径研究——以广东省21个地市为例. 科技管理研究. 2024(24): 191-201 .

    Other cited types(10)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 6.2 %FULLTEXT: 6.2 %META: 91.0 %META: 91.0 %PDF: 2.8 %PDF: 2.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 24.1 %其他: 24.1 %其他: 0.7 %其他: 0.7 %东莞: 4.8 %东莞: 4.8 %临汾: 0.7 %临汾: 0.7 %伊利诺伊州: 0.7 %伊利诺伊州: 0.7 %保定: 0.7 %保定: 0.7 %北京: 3.4 %北京: 3.4 %十堰: 0.7 %十堰: 0.7 %南京: 1.4 %南京: 1.4 %台州: 1.4 %台州: 1.4 %嘉峪关: 2.1 %嘉峪关: 2.1 %大同: 1.4 %大同: 1.4 %天津: 2.8 %天津: 2.8 %宣城: 0.7 %宣城: 0.7 %常德: 0.7 %常德: 0.7 %延安: 0.7 %延安: 0.7 %张家口: 0.7 %张家口: 0.7 %扬州: 2.1 %扬州: 2.1 %昆明: 0.7 %昆明: 0.7 %晋城: 0.7 %晋城: 0.7 %杭州: 2.1 %杭州: 2.1 %格兰特县: 0.7 %格兰特县: 0.7 %济南: 0.7 %济南: 0.7 %温州: 1.4 %温州: 1.4 %湖州: 0.7 %湖州: 0.7 %漯河: 4.1 %漯河: 4.1 %福州: 0.7 %福州: 0.7 %芒廷维尤: 19.3 %芒廷维尤: 19.3 %芝加哥: 2.8 %芝加哥: 2.8 %衢州: 0.7 %衢州: 0.7 %西宁: 4.8 %西宁: 4.8 %贵阳: 1.4 %贵阳: 1.4 %运城: 3.4 %运城: 3.4 %遵义: 0.7 %遵义: 0.7 %邯郸: 0.7 %邯郸: 0.7 %郑州: 0.7 %郑州: 0.7 %重庆: 1.4 %重庆: 1.4 %长沙: 2.1 %长沙: 2.1 %青岛: 0.7 %青岛: 0.7 %其他其他东莞临汾伊利诺伊州保定北京十堰南京台州嘉峪关大同天津宣城常德延安张家口扬州昆明晋城杭州格兰特县济南温州湖州漯河福州芒廷维尤芝加哥衢州西宁贵阳运城遵义邯郸郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (53) PDF downloads(2) Cited by(16)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return