Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
MA Xiao-qian, ZHANG Zhe, LIU Chao, WANG Jun-jie, WANG Jia-lin, YU Yi, CAO Rui-jie, SHI Zhi-li, WANG Ya-yi. TREATMENT OF LEACHATE FROM MUNICIPAL SOLID WASTE INCINERATION PLANT BY COMBINED ANAMMOX PROCESS: NITROGEN REMOVAL AND MICROBIAL MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 110-118. doi: 10.13205/j.hjgc.202111014
Citation: CHEN Da, LIU Chunting, WU Mengying, YANG Xiaojun, GUO Xiang. RESEARCH ADVANCES AND HOTSPOT EVOLUTION OF SUSTAINABLE AVIATION FUEL: A VISUAL ANALYSIS BASED ON BIBLIOMETRICS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 132-139. doi: 10.13205/j.hjgc.202410016

RESEARCH ADVANCES AND HOTSPOT EVOLUTION OF SUSTAINABLE AVIATION FUEL: A VISUAL ANALYSIS BASED ON BIBLIOMETRICS

doi: 10.13205/j.hjgc.202410016
  • Received Date: 2023-10-20
    Available Online: 2024-11-30
  • As an inevitable strategic choice for aviation carbon neutrality, the application of sustainable aviation fuel (SAF) can significantly reduce the carbon emissions of the aviation industry. Bibliometric analysis combined with the S-curve technique and visualization tools (VOSviewer) were applied, to quantitatively analyze 2440 articles related to SAF research in the Web of Science from 2001 to 2022. The development trend of key technologies for SAF based on the incoPat Global Patent Database was also conducted. Biblio-metric results revealed that the number of articles on SAF had increased from 8 in 2001 to 388 in 2022, and it intuitively showed that SAF technology has great development potential in the next 20 years by constructing the S-curve of the published volume. In the global competition for sustainable aviation fuel technology, China ranks second in terms of publication volume in the world after the United States, both of them are core countries in the international cooperation network. The co-occurrence and evolution path of keywords suggests that "ethanol", "microalgae", "cellulose", "hydrodeoxygenation", "Fischer-Tropsch synthesis" and "life cycle assessment" have become the current research hotspots. Patent data analysis demonstrates that the two key technologies, "hydrodeoxygenation" and "Fischer-Tropsch synthesis", have become a relatively mature. This bibliometric conclusion can provide support for China to develop its own sustainable aviation fuel technology and industry based on its own national situations.
  • [1]
    BP. Statistical Review of World Energy[M]. London: 2022: 3.
    [2]
    WEI H, LIU W, CHEN X, et al. Renewable bio-jet fuel production for aviation: a review[J]. Fuel, 2019, 254: 115599.
    [3]
    丁水汀, 杨晓军, 甘宸宇, 等. 负碳航空燃料的新路径探讨[J]. 航空动力, 2022(6): 16-19.
    [4]
    KRAMER S, ANDAC G, HEYNE J, et al. Perspectives on fully synthesized sustainable aviation fuels: Direction and opportunities[J]. Frontiers in Energy Research, 2022, 9. doi: 10.3389/fenrg.2021.782823.
    [5]
    陈佳慧, 王斐菲, 张乃丽, 等. 生物航油的制备与应用发展前景[J]. 能源研究与利用, 2021(4): 21-31.
    [6]
    李世良. 油脂高效利用产生物航空燃油及高值化学品相关工艺研究[D]. 北京:北京化工大学, 2020.
    [7]
    GUTIERREZ-Antonio C, GOMEZ-Castro F I, de LIRA-FLORES J A, et al. A review on the production processes of renewable jet fuel[J]. Renewable & Sustainable Energy Reviews, 2017, 79: 709-729.
    [8]
    孙晓英, 刘祥, 赵雪冰, 等. 航空生物燃料制备技术及其应用研究进展[J]. 生物工程学报, 2013, 29(3): 285-298.
    [9]
    郝敬文. 基于(火用)分析的生物质水相转化制备生物航油生命周期评价[D]. 南京:东南大学, 2021.
    [10]
    乔凯, 傅杰, 周峰, 等. 国内外生物航煤产业回顾与展望[J]. 生物工程学报, 2016, 32(10): 1309-1321.
    [11]
    WANG T J, TAN J, QIU S, et al. Liquid fuel production by aqueous phase catalytic transformation of biomass for aviation[C]//Energy Procedia. Taipei, TAIWAN, 2014: 432-435.
    [12]
    SHAHRIAR M F, KHANAL A. The current techno-economic, environmental, policy status and perspectives of sustainable aviation fuel (SAF)[J]. Fuel, 2022, 325: 124905.
    [13]
    王翔宇. 可持续航空燃料发展展望[J]. 航空动力, 2022(2): 24-28.
    [14]
    杨飞. 某型生物航空煤油的基础特性研究[D]. 南京:南京航空航天大学, 2019.
    [15]
    娄岩, 傅晓阳, 黄鲁成. 基于文献计量学的技术成熟度研究及实证分析[J]. 统计与决策, 2010(19): 99-101.
    [16]
    赵蓉英, 许丽敏. 文献计量学发展演进与研究前沿的知识图谱探析[J]. 中国图书馆学报,2010, 36(5): 60-68.
    [17]
    MAO G, HU H, LIU X, et al. A bibliometric analysis of industrial wastewater treatments from 1998 to 2019[J]. Environmental Pollution, 2021, 275:115785.
    [18]
    DONTHU N, KUMAR S, MUKHERJEE D, et al. How to conduct a bibliometric analysis: an overview and guidelines[J]. Journal of Business Research, 2021, 133: 285-296.
    [19]
    雪晶, 侯丹, 王旻烜, 等. 世界生物质能产业与技术发展现状及趋势研究[J]. 石油科技论坛, 2020, 39(3): 25-35.
    [20]
    刘子钰, 王基铭. 我国绿色航空能源与减排降碳探索途径[J]. 当代石油石化, 2022, 30(11): 1-7.
    [21]
    郭祥, 李瑞祎, 张蕊, 等. 基于文献计量的生物质气化研究发展态势分析[J]. 环境工程, 2022, 40(7): 232-239

    , 131.
    [22]
    KUNKES E L, SIMONETTI D A, WEST R M, et al. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes[J]. Science, 2008, 322(5900): 417-421.
    [23]
    SARATHY S M, WESTBROOK C K, MEHL M, et al. Comprehensive chemical kinetic modeling of the oxidation of 2-methylalkanes from C-7 to C-20[J]. Combustion and Flame, 2011, 158(12): 2338-2357.
    [24]
    BOND J Q, UPADHYE A A, OLCAY H, et al. Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic processing of biomass[J]. Energy & Environmental Science, 2014, 7(4): 1500-1523.
    [25]
    XING R, SUBRAHMANYAM A V, OLCAY H, et al. Production of jet and diesel fuel range alkanes from waste hemicellulose-derived aqueous solutions[J]. Green Chemistry, 2010, 12(11): 1933-1946.
    [26]
    RANZI E, FRASSOLDATI A, STAGNI A, et al. Reduced kinetic schemes of complex reaction systems: fossil and biomass-derived transportation fuels[J]. International Journal of Chemical Kinetics, 2014, 46(9): 512-542.
    [27]
    VERIANSYAH B, HAN J Y, KIM S K, et al. Production of renewable diesel by hydroprocessing of soybean oil: effect of catalysts[J]. Fuel, 2012, 94(1): 578-585.
    [28]
    SHONNARD D R, WILLIAMS L, KALNES T N. Camelina-derived jet fuel and diesel: sustainable advanced biofuels[J]. Environmental Progress & Sustainable Energy, 2010, 29(3): 382-392.
    [29]
    CORPORAN E, EDWARDS T, SHAFER L,et al. Chemical, thermal stability, seal swell, and emissions studies of alternative jet fuels[J]. Energy & Fuels, 2011, 25(3): 955-966.
    [30]
    OLCAY H, SUBRAHMANYAM A V, XING R, et al. Production of renewable petroleum refinery diesel and jet fuel feedstocks from hemicellulose sugar streams[J]. Energy & Environmental Science, 2013, 6(1): 205-216.
    [31]
    De Jong S, HOEFNAGELS R, FAAIJ A, et al. The feasibility of short-term production strategies for renewable jet fuels: a comprehensive techno-economic comparison[J]. Biofuels Bioproducts & Biorefining-BioFPR, 2015, 9(6): 778-800.
    [32]
    甘宸宇, 丁水汀, 邱天, 等. 可持续航空燃料安全标准发展历程及趋势[J]. 航空动力学报, 1-10.
    [33]
    ZHANG C, HUI X, LIN Y, Sung C. Recent development in studies of alternative jet fuel combustion: progress, challenges, and opportunities[J]. Renewable & Sustainable Energy Reviews, 2016, 54: 120-138.
    [34]
    丁奕如,杨雷,郑平,等.中国可持续航空燃料发展研究报告[R].北京大学能源学院, 2022.
    [35]
    许绩辉, 王克. 中国民航业中长期碳排放预测与技术减排潜力分析[J]. 中国环境科学, 2022, 42(7): 3412-3424.
    [36]
    詹婷雯, 邓志彬. 可持续航空燃料发展评价与对策研究[J]. 科技创新与应用, 2019(2): 151-152.
    [37]
    赵晶, 郭放, 阿鲁斯, 等. 未来航空燃料原料可持续性研究[J]. 北京航空航天大学学报, 2016, 42(11): 2378-2385.
    [38]
    李宇萍, 章青, 王铁军, 等. 第二代生物航空燃油的关键技术分析和进展动态[J]. 林产化学与工业, 2014(5): 162-168.
  • Relative Articles

    [1]WU Yulun, LI Zemin, CHENG Xiaoqian, QIU Guanglei, WEI Chaohai. PREDICTION OF NITROGEN REMOVAL PERFORMANCE AND IDENTIFICATION OF KEY PARAMETERS OF PARTIAL NITRIFICATION/PARTIAL DENITRIFICATION-ANAMMOX PROCESS BASED ON MACHINE LEARNING[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 180-190. doi: 10.13205/j.hjgc.202409017
    [2]ZHANG Zheng, QIU Dahe, JING Zibo, XUE Bo, HU Xinyu. RETINANET-BASED DIRECTED TARGET DETECTION FOR RECYCLABLE WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 160-168. doi: 10.13205/j.hjgc.202406019
    [3]ZHOU Lei, LI Yalan, ZHANG Chaoqun, SONG Wen, YANG Kun, DU Mingyi, CHEN Qiang, LIU Yang. RESEARCH PROGRESS ON MONITORING AND SIMULATION OF SPATIAL DISTRIBUTION, VOLUME AND VARIATION OF CONSTRUCTION WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 243-253. doi: 10.13205/j.hjgc.202403030
    [4]XU Li, ZHOU Lawu, LI Gaojia. A RECYCLABLE WASTE SORTING SYSTEM BASED ON AN IMPROVED INCEPTION RESNET V2 NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 233-241. doi: 10.13205/j.hjgc.202404027
    [5]LIU Zhi, GAO Dongming. APPLICATION AND COMPARISON OF DIFFERENT DEEP LEARNING MODELS IN RECOGNITION OF FOOD WASTE TYPES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 254-260. doi: 10.13205/j.hjgc.202403031
    [6]LIN Yudao, TAO Tao, XIN Kunlun, PU Zhengheng, CHEN Lei. GRAPH DEEP LEARNING: APPLICATION ON SHORT-TERM WATER DEMAND FORECASTING FOR WATER DISTRIBUTION NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 149-153. doi: 10.13205/j.hjgc.202304021
    [7]LI Yuanyuan, LIU Hailong. PREDICTION OF TOTAL PHOSPHORUS IN RIVERS BASED ON ATTENTION MECHANISM OF TEMPORAL CONVOLUTIONAL NETWORKS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 163-171. doi: 10.13205/j.hjgc.202305022
    [8]ZENG Xiangji, YAN Feng, LI Yonggang, PAN Yan, YANG Jingya, TAN Xiangtian. MONITORING METHODS AND THEIR APPLICATION OF FLOWING WATER POLLUTION BASED ON INTELLIGENT VISION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 78-83,122. doi: 10.13205/j.hjgc.202311014
    [9]ZHOU Yi, XIONG Zhen, WU Mingming, LI Jin, CHEN Cong, GAO Fang, LIU Chang, HUANG Kai. DESIGN AND IMPLEMENTATION OF INTELLIGENT OPERATION MANAGEMENT PLATFORM FOR AN UNDERGROUND SEWAGE TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 148-153. doi: 10.13205/j.hjgc.202311023
    [10]YUAN Hongchun, ZANG Tianqi. DETECTION OF UNDERWATER TRASH BASED ON Ghost-YOLOv5 AND ATTENTION MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 214-221. doi: 10.13205/j.hjgc.202307029
    [11]BAO Zunsheng, XIONG Xiaoli, LIU Jicheng, XIN Lu, ZHANG Danyu, LI Shanqiang. EXPLORATION OF MANUAL FINE REGULATION OF CARBON SOURCE DOSAGE IN AN ADVANCED WASTEWATER TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 137-142. doi: 10.13205/j.hjgc.202304019
    [12]HU Song, LIU Guohong, HE Ying, YAN Jiachen, CHEN Hanle, YAN Xiliang, YAN Bing. PREDICTION ON PHOTOELECTRIC CONVERSION EFFICIENCY OF ORGANIC PHOTOVOLTAIC MATERIALS USING END-TO-END DEEP LEARNING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 188-193. doi: 10.13205/j.hjgc.202206024
    [13]JIN Peiwei, YAO Yan, LIANG Xiaoyu, CAI Jinhui. OVERVIEW OF RESEARCHES ON MUNICIPAL SOLID WASTE IMAGE RECOGNITION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 196-206. doi: 10.13205/j.hjgc.202201029
    [14]WANG Wensheng, NIAN Chengxu, ZHANG Chao, YAN Rupeng, WU Xinquan, ZHANG Xinbo. DESIGN OF AUTOMATIC GARBAGE SORTING BIN FOR NON-RESIDENTIAL AREA BASED ON YOLO v5[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 159-165. doi: 10.13205/j.hjgc.202203024
    [15]WANG Yiming, MA Zhenhua, YANG Mengqi, DONG Xin, ZENG Siyu. A HYBRID MODELING STRATEGY FOR CONTROL SIMULATOR OF URBAN DRAINAGE SYSTEMS BASED ON DATA-DRIVEN AND MECHANISM-DRIVEN METHOD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 204-211,225. doi: 10.13205/j.hjgc.202206026
    [16]DONG Hao, SUN Lin, OUYANG Feng. PREDICTION OF PM2.5 CONCENTRATION BASED ON INFORMER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 48-54,62. doi: 10.13205/j.hjgc.202206006
    [17]WU Yuxing, WANG Xiaodong, CHEN Ning, YANG Benliang, YAN Tingliang, HUANG Qing. FULL-SCALE STUDY OF AN INTELLIGENT CARBON DOSING CONTROL SYSTEM IN A TYPICAL URBAN WASTEWATER TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 212-218,271. doi: 10.13205/j.hjgc.202206027
    [18]LU Yao, YANG Jie, SHAO Zhi-juan, ZHU Cong-cong. PM2.5 ROBUST PREDICTION BASED ON STAGED TEMPORAL ATTENTION NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 93-100. doi: 10.13205/j.hjgc.202110013
    [19]HUANG Chun-tao, FAN Dong-ping, LU Ji-fu, LIAO Qi-feng. PREDICTION OF PM2.5 AND PM10 CONCENTRATION IN GUANGZHOU BASED ON DEEP LEARNING MODEL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 135-140. doi: 10.13205/j.hjgc.202112020
    [20]YU Shen-ting, LIU Ping. LONG SHORT-TERM MEMORY-CONVOLUTION NEURAL NETWORK (LSTM-CNN) FOR PREDICTION OF PM2.5 CONCENTRATION IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 176-180,66. doi: 10.13205/j.hjgc.202006029
  • Cited by

    Periodical cited type(3)

    1. 黄学平,辛攀,吴永明,吴留兴,邓觅,姚忠. 融合残差与VMD-TCN-BiLSTM混合网络的鄱阳湖总氮预测. 长江科学院院报. 2025(03): 59-67+75 .
    2. 李世忠,满奕,何正磊. 基于DNN-LSTM的造纸废水处理过程温室气体排放分析模型. 中国造纸. 2024(04): 170-176 .
    3. 陈亚松,邱勇,柳蒙蒙,刘萌萌,刘雪洁,田宇心,黄霞. 污水处理软测量仪表研究进展与应用. 工业仪表与自动化装置. 2024(03): 60-67+88 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.7 %FULLTEXT: 10.7 %META: 85.7 %META: 85.7 %PDF: 3.7 %PDF: 3.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 24.2 %其他: 24.2 %其他: 0.3 %其他: 0.3 %上海: 2.5 %上海: 2.5 %东莞: 1.7 %东莞: 1.7 %保定: 0.3 %保定: 0.3 %兰州: 0.6 %兰州: 0.6 %北京: 6.2 %北京: 6.2 %南京: 0.8 %南京: 0.8 %南宁: 1.4 %南宁: 1.4 %南昌: 0.6 %南昌: 0.6 %南通: 0.3 %南通: 0.3 %台州: 0.8 %台州: 0.8 %合肥: 0.8 %合肥: 0.8 %唐山: 0.6 %唐山: 0.6 %喀什: 1.4 %喀什: 1.4 %嘉兴: 0.3 %嘉兴: 0.3 %夏延: 0.3 %夏延: 0.3 %大同: 0.6 %大同: 0.6 %天津: 3.4 %天津: 3.4 %太原: 0.3 %太原: 0.3 %宁波: 0.3 %宁波: 0.3 %宜春: 0.8 %宜春: 0.8 %宣城: 0.3 %宣城: 0.3 %宿州: 0.3 %宿州: 0.3 %宿迁: 0.3 %宿迁: 0.3 %巴音郭楞: 0.3 %巴音郭楞: 0.3 %常州: 1.4 %常州: 1.4 %常德: 0.3 %常德: 0.3 %广州: 0.6 %广州: 0.6 %弗吉: 0.6 %弗吉: 0.6 %张家口: 2.5 %张家口: 2.5 %成都: 1.4 %成都: 1.4 %扬州: 2.8 %扬州: 2.8 %无锡: 1.4 %无锡: 1.4 %昆明: 0.8 %昆明: 0.8 %晋城: 0.3 %晋城: 0.3 %杭州: 4.2 %杭州: 4.2 %柳州: 0.3 %柳州: 0.3 %桂林: 0.8 %桂林: 0.8 %武汉: 1.7 %武汉: 1.7 %沈阳: 0.8 %沈阳: 0.8 %济宁: 0.3 %济宁: 0.3 %深圳: 0.3 %深圳: 0.3 %温州: 0.6 %温州: 0.6 %湖州: 2.2 %湖州: 2.2 %漯河: 3.7 %漯河: 3.7 %潜江: 0.3 %潜江: 0.3 %石家庄: 0.6 %石家庄: 0.6 %绵阳: 0.3 %绵阳: 0.3 %芒廷维尤: 9.0 %芒廷维尤: 9.0 %芝加哥: 3.9 %芝加哥: 3.9 %蒙哥马利: 0.6 %蒙哥马利: 0.6 %衡阳: 0.6 %衡阳: 0.6 %衢州: 0.6 %衢州: 0.6 %西宁: 3.7 %西宁: 3.7 %西安: 0.3 %西安: 0.3 %贵阳: 0.3 %贵阳: 0.3 %运城: 1.1 %运城: 1.1 %遵义: 0.3 %遵义: 0.3 %郑州: 0.3 %郑州: 0.3 %重庆: 0.8 %重庆: 0.8 %长沙: 0.6 %长沙: 0.6 %青岛: 0.6 %青岛: 0.6 %其他其他上海东莞保定兰州北京南京南宁南昌南通台州合肥唐山喀什嘉兴夏延大同天津太原宁波宜春宣城宿州宿迁巴音郭楞常州常德广州弗吉张家口成都扬州无锡昆明晋城杭州柳州桂林武汉沈阳济宁深圳温州湖州漯河潜江石家庄绵阳芒廷维尤芝加哥蒙哥马利衡阳衢州西宁西安贵阳运城遵义郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (121) PDF downloads(3) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return