Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
MA Xiao-qian, ZHANG Zhe, LIU Chao, WANG Jun-jie, WANG Jia-lin, YU Yi, CAO Rui-jie, SHI Zhi-li, WANG Ya-yi. TREATMENT OF LEACHATE FROM MUNICIPAL SOLID WASTE INCINERATION PLANT BY COMBINED ANAMMOX PROCESS: NITROGEN REMOVAL AND MICROBIAL MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 110-118. doi: 10.13205/j.hjgc.202111014
Citation: WANG Xingming, WANG Ying, FAN Tingyu, CHU Zhaoxia, DONG Zhongbing, DONG Peng. PATHWAYS OF HEAVY METALS ABSORPTION BY EARTHWORMS IN SLUDGE VERMI COMPOSTING ENHANCED BY RICE HUSK CHARCOAL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 147-154. doi: 10.13205/j.hjgc.202410018

PATHWAYS OF HEAVY METALS ABSORPTION BY EARTHWORMS IN SLUDGE VERMI COMPOSTING ENHANCED BY RICE HUSK CHARCOAL

doi: 10.13205/j.hjgc.202410018
  • Received Date: 2024-01-30
    Available Online: 2024-11-30
  • To investigate the characteristics of earthworm enrichment of heavy metals in the process of rice husk charcoal composting sludge, 0, 2%, 4%, 6%, and 8% (mass fraction) rice husk charcoal was added to the sludge to undergo earthworm composting respectively. Through the internal correlation analysis of heavy metals concentrations in sludge, earthworm epidermis, intestine, and whole body, the pathways of earthworm absorption of heavy metals in sludge were explored. The results showed that after adding rice husk charcoal to the earthworm sludge composting system, the pH and TK of the composted sludge increased, while the EC, TOC, TP, and available heavy metals contents of the composted sludge decreased; the addition of rice husk charcoal increased the heavy metal content in the whole bodies, epidermis, and intestines of earthworms, thereby reducing the available heavy metals contents in sludge; the addition of rice husk charcoal promoted the trend of earthworm epidermis absorbing heavy metals. The distribution coefficients of Cr, Cu, and Zn increased with the increase of rice husk charcoal dosage, while the distribution coefficients of Pb decreased with the increase of this dosage; the addition of rice husk charcoal affects the overall heavy metals absorption capacity of earthworms by changing pH and EC of sludge, affected the heavy metals absorption capacity of earthworm epidermis by changing the pH, TOC, TN, and TP of sludge, and affected the heavy metals absorption capacity of earthworm intestines by changing TN and TP of sludge. This study can provide theoretical support for the regulation of heavy metals in earthworm compost sludge by biochar and the resource utilization of sludge.
  • [1]
    CASTILLO J M, ROMERO E, NOGALES R. Dynamics of microbial communities related to biochemical parameters during vermicomposting and maturation of agroindustrial lignocellulose wastes[J]. Bioresource Technology, 2013,146: 345-354.
    [2]
    IWAI C B, TA-OUN M, CHUASAVATEE T, et al. Management of municipal sewage sludge by vermicomposting technology: converting a waste into a bio fertilizer for agriculture[J]. International Journal of Environmental and Rural Development, 2013,4(1): 169-174.
    [3]
    HE X, ZHANG Y X, SHEN M C, et al. Effect of vermicomposting on concentration and speciation of heavy metals in sewage sludge with additive materials[J]. Bioresource Technology, 2016,218: 867-873.
    [4]
    王振兴. 重金属在污泥蚯蚓堆肥中的变化及对土壤硝化活性的影响[D]. 扬州:扬州大学, 2017.
    [5]
    WANG L, ZHANG Y, LIAN J, et al. Impact of fly ash and phosphatic rock on metal stabilization and bioavailability during sewage sludge vermicomposting[J]. Bioresource Technology, 2013,136: 281-287.
    [6]
    周楫,余亚伟,蒋越,等.生物炭对污泥堆肥及其利用过程重金属有效态的影响[J].环境科学,2019,40(2):987-993.
    [7]
    OLESZCZUK P, HALE S E, LEHMANN J, et al. Activated carbon and biochar amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge[J]. Bioresource Technology, 2012,111: 84-91.
    [8]
    程焱,余亚伟,张成,等.污泥堆肥及其利用过程汞的变化特征[J].环境化学,2021,40(7):2226-2233.
    [9]
    孟莉蓉,俞浩丹,杨婷婷,等. 2种生物炭对Pb、Cd污染土壤的修复效果[J]. 江苏农业学报,2018,34(4):835-841.
    [10]
    司马小峰,孟玉,吴东彪,等.生物炭-超富集植物联合修复镉污染土壤的研究[J].安徽农业科学,2021,49(6):80-84.
    [11]
    郑云珠,田晓飞,翟胜,等.小麦秸秆生物炭对冬小麦生长及土壤水分的影响[J].江苏农业科学,2020,48(23):84-88.
    [12]
    程焱,余亚伟,张成,等.污泥堆肥及其利用过程汞的变化特征[J].环境化学,2021,40(7):2226-2233.
    [13]
    钱君龙,张连弟,乐美麟.过硫酸盐消化法测定土壤全氮全磷[J].土壤,1990(5):258-262.
    [14]
    REN S X. Method for determination of total potassium in soil[J]. Chinese Journal of Soil Science, 1961,2:52-56.
    [15]
    李亮亮,张大庚,李天来,等.土壤有效态重金属提取剂选择的研究[J].土壤,2008(5):819-823.
    [16]
    史志明. 菲在蚯蚓体内的分布及其对蚯蚓抗氧化防御体系的影响[D].南京:南京农业大学,2013.
    [17]
    王振兴,徐琪,董伟强,等.城市生活污泥蚯蚓堆肥过程中重金属形态变化特征[J].环境工程,2017,35(11):120-123

    ,27.
    [18]
    FU X Y, HUANG K, CHEN X M, et al. Feasibility of vermistabilization for fresh pelletized dewatered sludge with earthworms Bimastus parvus[J].Bioresource Technology,2015, 175C: 646-650.
    [19]
    贾洋洋. 不同改性处理花生壳炭对城市污泥堆肥的影响[D]. 郑州:河南农业大学, 2019.
    [20]
    BIEDERMAN L A, HARPOLE W S. Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis[J]. GCB Bioenergy, 2013,5(2): 202-214.
    [21]
    徐轶群,吴小飞,许健,等.蚯蚓堆肥对城市生活污泥氮、磷营养物质矿化的影响[J].家畜生态学报,2016,37(4):54-58.
    [22]
    范劲诗. 生物炭添加对市政污泥蚯蚓堆肥的影响研究[D].长沙:湖南大学,2020.
    [23]
    CACERES R, FLOTATS X, MARFA O. Changes in the chemical and physicochemical properties of the solid fraction of cattle slurry during composting using different aeration strategies[J]. Waste management, 2006, 26(10): 1081-1091.
    [24]
    陈学民,黄魁,伏小勇,等.2种表居型蚯蚓处理污泥的比较研究[J].环境科学,2010,31(5):1274-1279.
    [25]
    SUTHAR S, SINGH S. Vermicomposting of domestic waste by using two epigeic earthworms (Perionyx excavatus and Perionyx sansibaricus)[J]. International Journal of Environmental Science & Technology, 2008,5(1): 99-106.
    [26]
    中华人民共和国农业农村部. 有机肥料:NY/T 525—2021[S]. 北京,2021.
    [27]
    王哲,宓展盛,郑春丽,等.生物炭对矿区土壤重金属有效性及形态的影响[J].化工进展,2019,38(6):2977-2985.
    [28]
    IGNATOWICZ K. The impact of sewage sludge treatment on the content of selected heavy metals and their fractions[J]. Environmental Research, 2017,156: 19-22.
    [29]
    孙西宁. 污泥堆肥过程中重金属形态变化的研究[D]. 咸阳:西北农林科技大学, 2007.
    [30]
    李明.高温堆肥与蚯蚓堆肥对城市污泥重金属形态的影响[J].环境工程学报,2008,2(10):1407-1412.
    [31]
    MALIŃSKA K, GOLAN'SKA M, CACERES R, et al. Biochar amendment for integrated composting and vermicomposting of sewage sludge-The effect of biochar on the activity of Eisenia fetida and the obtained vermicompost[J]. Bioresource Technology, 2017,225: 206-214.
    [32]
    左静,陈德,郭虎,等.小麦秸秆生物质炭对旱地土壤铅镉有效性及小麦、玉米吸收的影响[J].农业环境科学学报,2017,36(6):1133-1140.
    [33]
    AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: a review[J]. Chemosphere, 2014, 99(3): 19-33.
    [34]
    王漫莉,罗启仕,冉雨灵,等.受污染土壤中重金属的蚯蚓生物有效性评估研究进展[J]. 生态与农村环境学报, 2019,35(9): 1097-1102.
    [35]
    鲁福庆,王兴明,储昭霞,等.蚯蚓对不同厚度复垦土壤中重金属生物有效性的影响[J]. 生态学杂志, 2022,41(1): 124-131.
    [36]
    伏小勇,秦赏,杨柳,等.蚯蚓对土壤中重金属的富集作用研究[J]. 农业环境科学学报, 2009,28(1): 78-83.
    [37]
    NAGAJYOTI P C, LEE K D, SREEKANTH T V M. Heavy metals, occurrence and toxicity for plants: a review[J]. Environmental Chemistry Letters, 2010,8(3): 199-216.
    [38]
    张强. 贵州省主要土壤外源Pb和Cd对大麦和蚯蚓毒性初步研究[D]. 贵阳:贵州师范大学, 2016.
    [39]
    AZIZI A B, LIM M P M, NOOR Z M, et al. Vermiremoval of heavy metal in sewage sludge by utilising Lumbricus rubellus[J]. Ecotoxicology and Environmental Safety, 2013,90: 13-20.
    [40]
    吴玲,张孟豪,钟鹤森,等.生物炭施用对土壤中蚯蚓的影响[J].特种经济动植物,2022,25(11):174-179.
    [41]
    LANNO R, WELLS J, CONDER J, et al. The bioavailability of chemicals in soil for earthworms[J]. Ecotoxicology and Environmental Safety, 2003,57(1): 39-47.
    [42]
    AUDUSSEAU H, VANDENBULCKE F, DUME C, et al. Impacts of metallic trace elements on an earthworm community in an urban wasteland: emphasis on the bioaccumulation and genetic characteristics in Lumbricus castaneus[J]. Science of the Total Environment, 2020,718(C): 137259.
    [43]
    张池,周波,吴家龙,等. 蚯蚓在我国南方土壤修复中的应用[J].生物多样性, 2018,26(10): 1091-1102.
    [44]
    PANZARINO O, HYRŠL P, DOBEŠ P, et al. Rank-based biomarker index to assess cadmium ecotoxicity on the earthworm Eisenia andrei[J]. Chemosphere, 2016,145: 480-486.
    [45]
    ZHOU C F, HUANG M Y, YU J D, et al. The effect of low-molecular-weight organic acids on copper toxicity in E. fetida in an acute exposure system[J]. Environmental science and pollution research international, 2017,24(9): 8805-8813.
    [46]
    ZHONG Q Y, LI L Z, HE M C, et al. Toxicity and bioavailability of antimony to the earthworm (Eisenia fetida) in different agricultural soils[J]. Environmental Pollution, 2021,291: 118215.
    [47]
    李志强. 蚯蚓对铜离子的富集及其对人工土壤铜锌形态的影响[D]. 泰安:山东农业大学,2009.
    [48]
    LILIAN M, SOPHIE B, ISABELLE L, et al. Modulation of trace element bioavailability for two earthworm species after biochar amendment into a contaminated technosol[J]. Ecotoxicology (London, England), 2017,26(10): 1378-1391.
    [49]
    SIZMUR T, WATTS M J, BROWN G D, et al. Impact of gut passage and mucus secretion by the earthworm Lumbricus terrestris on mobility and speciation of arsenic in contaminated soil[J]. Journal of Hazardous Materials, 2011,197: 169-175.
    [50]
    张薇,施加春.不同钝化剂与蚯蚓联合处理对猪粪堆肥中铜锌的钝化效果[J].浙江大学学报(农业与生命科学版), 2017,43(6): 775-786.
    [51]
    黄财德,李扬,乔玉辉,等. 蚓粪腐殖酸对Cd2+的吸附作用研究[J]. 环境污染与防治, 2020,42(3): 324-327.
  • Relative Articles

    [1]WU Yulun, LI Zemin, CHENG Xiaoqian, QIU Guanglei, WEI Chaohai. PREDICTION OF NITROGEN REMOVAL PERFORMANCE AND IDENTIFICATION OF KEY PARAMETERS OF PARTIAL NITRIFICATION/PARTIAL DENITRIFICATION-ANAMMOX PROCESS BASED ON MACHINE LEARNING[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 180-190. doi: 10.13205/j.hjgc.202409017
    [2]ZHANG Zheng, QIU Dahe, JING Zibo, XUE Bo, HU Xinyu. RETINANET-BASED DIRECTED TARGET DETECTION FOR RECYCLABLE WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 160-168. doi: 10.13205/j.hjgc.202406019
    [3]ZHOU Lei, LI Yalan, ZHANG Chaoqun, SONG Wen, YANG Kun, DU Mingyi, CHEN Qiang, LIU Yang. RESEARCH PROGRESS ON MONITORING AND SIMULATION OF SPATIAL DISTRIBUTION, VOLUME AND VARIATION OF CONSTRUCTION WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 243-253. doi: 10.13205/j.hjgc.202403030
    [4]XU Li, ZHOU Lawu, LI Gaojia. A RECYCLABLE WASTE SORTING SYSTEM BASED ON AN IMPROVED INCEPTION RESNET V2 NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 233-241. doi: 10.13205/j.hjgc.202404027
    [5]LIU Zhi, GAO Dongming. APPLICATION AND COMPARISON OF DIFFERENT DEEP LEARNING MODELS IN RECOGNITION OF FOOD WASTE TYPES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 254-260. doi: 10.13205/j.hjgc.202403031
    [6]LIN Yudao, TAO Tao, XIN Kunlun, PU Zhengheng, CHEN Lei. GRAPH DEEP LEARNING: APPLICATION ON SHORT-TERM WATER DEMAND FORECASTING FOR WATER DISTRIBUTION NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 149-153. doi: 10.13205/j.hjgc.202304021
    [7]LI Yuanyuan, LIU Hailong. PREDICTION OF TOTAL PHOSPHORUS IN RIVERS BASED ON ATTENTION MECHANISM OF TEMPORAL CONVOLUTIONAL NETWORKS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 163-171. doi: 10.13205/j.hjgc.202305022
    [8]ZENG Xiangji, YAN Feng, LI Yonggang, PAN Yan, YANG Jingya, TAN Xiangtian. MONITORING METHODS AND THEIR APPLICATION OF FLOWING WATER POLLUTION BASED ON INTELLIGENT VISION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 78-83,122. doi: 10.13205/j.hjgc.202311014
    [9]ZHOU Yi, XIONG Zhen, WU Mingming, LI Jin, CHEN Cong, GAO Fang, LIU Chang, HUANG Kai. DESIGN AND IMPLEMENTATION OF INTELLIGENT OPERATION MANAGEMENT PLATFORM FOR AN UNDERGROUND SEWAGE TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 148-153. doi: 10.13205/j.hjgc.202311023
    [10]YUAN Hongchun, ZANG Tianqi. DETECTION OF UNDERWATER TRASH BASED ON Ghost-YOLOv5 AND ATTENTION MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 214-221. doi: 10.13205/j.hjgc.202307029
    [11]BAO Zunsheng, XIONG Xiaoli, LIU Jicheng, XIN Lu, ZHANG Danyu, LI Shanqiang. EXPLORATION OF MANUAL FINE REGULATION OF CARBON SOURCE DOSAGE IN AN ADVANCED WASTEWATER TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 137-142. doi: 10.13205/j.hjgc.202304019
    [12]HU Song, LIU Guohong, HE Ying, YAN Jiachen, CHEN Hanle, YAN Xiliang, YAN Bing. PREDICTION ON PHOTOELECTRIC CONVERSION EFFICIENCY OF ORGANIC PHOTOVOLTAIC MATERIALS USING END-TO-END DEEP LEARNING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 188-193. doi: 10.13205/j.hjgc.202206024
    [13]JIN Peiwei, YAO Yan, LIANG Xiaoyu, CAI Jinhui. OVERVIEW OF RESEARCHES ON MUNICIPAL SOLID WASTE IMAGE RECOGNITION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 196-206. doi: 10.13205/j.hjgc.202201029
    [14]WANG Wensheng, NIAN Chengxu, ZHANG Chao, YAN Rupeng, WU Xinquan, ZHANG Xinbo. DESIGN OF AUTOMATIC GARBAGE SORTING BIN FOR NON-RESIDENTIAL AREA BASED ON YOLO v5[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 159-165. doi: 10.13205/j.hjgc.202203024
    [15]WANG Yiming, MA Zhenhua, YANG Mengqi, DONG Xin, ZENG Siyu. A HYBRID MODELING STRATEGY FOR CONTROL SIMULATOR OF URBAN DRAINAGE SYSTEMS BASED ON DATA-DRIVEN AND MECHANISM-DRIVEN METHOD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 204-211,225. doi: 10.13205/j.hjgc.202206026
    [16]DONG Hao, SUN Lin, OUYANG Feng. PREDICTION OF PM2.5 CONCENTRATION BASED ON INFORMER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 48-54,62. doi: 10.13205/j.hjgc.202206006
    [17]WU Yuxing, WANG Xiaodong, CHEN Ning, YANG Benliang, YAN Tingliang, HUANG Qing. FULL-SCALE STUDY OF AN INTELLIGENT CARBON DOSING CONTROL SYSTEM IN A TYPICAL URBAN WASTEWATER TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 212-218,271. doi: 10.13205/j.hjgc.202206027
    [18]LU Yao, YANG Jie, SHAO Zhi-juan, ZHU Cong-cong. PM2.5 ROBUST PREDICTION BASED ON STAGED TEMPORAL ATTENTION NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 93-100. doi: 10.13205/j.hjgc.202110013
    [19]HUANG Chun-tao, FAN Dong-ping, LU Ji-fu, LIAO Qi-feng. PREDICTION OF PM2.5 AND PM10 CONCENTRATION IN GUANGZHOU BASED ON DEEP LEARNING MODEL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 135-140. doi: 10.13205/j.hjgc.202112020
    [20]YU Shen-ting, LIU Ping. LONG SHORT-TERM MEMORY-CONVOLUTION NEURAL NETWORK (LSTM-CNN) FOR PREDICTION OF PM2.5 CONCENTRATION IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 176-180,66. doi: 10.13205/j.hjgc.202006029
  • Cited by

    Periodical cited type(3)

    1. 黄学平,辛攀,吴永明,吴留兴,邓觅,姚忠. 融合残差与VMD-TCN-BiLSTM混合网络的鄱阳湖总氮预测. 长江科学院院报. 2025(03): 59-67+75 .
    2. 李世忠,满奕,何正磊. 基于DNN-LSTM的造纸废水处理过程温室气体排放分析模型. 中国造纸. 2024(04): 170-176 .
    3. 陈亚松,邱勇,柳蒙蒙,刘萌萌,刘雪洁,田宇心,黄霞. 污水处理软测量仪表研究进展与应用. 工业仪表与自动化装置. 2024(03): 60-67+88 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.7 %FULLTEXT: 10.7 %META: 85.7 %META: 85.7 %PDF: 3.7 %PDF: 3.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 24.2 %其他: 24.2 %其他: 0.3 %其他: 0.3 %上海: 2.5 %上海: 2.5 %东莞: 1.7 %东莞: 1.7 %保定: 0.3 %保定: 0.3 %兰州: 0.6 %兰州: 0.6 %北京: 6.2 %北京: 6.2 %南京: 0.8 %南京: 0.8 %南宁: 1.4 %南宁: 1.4 %南昌: 0.6 %南昌: 0.6 %南通: 0.3 %南通: 0.3 %台州: 0.8 %台州: 0.8 %合肥: 0.8 %合肥: 0.8 %唐山: 0.6 %唐山: 0.6 %喀什: 1.4 %喀什: 1.4 %嘉兴: 0.3 %嘉兴: 0.3 %夏延: 0.3 %夏延: 0.3 %大同: 0.6 %大同: 0.6 %天津: 3.4 %天津: 3.4 %太原: 0.3 %太原: 0.3 %宁波: 0.3 %宁波: 0.3 %宜春: 0.8 %宜春: 0.8 %宣城: 0.3 %宣城: 0.3 %宿州: 0.3 %宿州: 0.3 %宿迁: 0.3 %宿迁: 0.3 %巴音郭楞: 0.3 %巴音郭楞: 0.3 %常州: 1.4 %常州: 1.4 %常德: 0.3 %常德: 0.3 %广州: 0.6 %广州: 0.6 %弗吉: 0.6 %弗吉: 0.6 %张家口: 2.5 %张家口: 2.5 %成都: 1.4 %成都: 1.4 %扬州: 2.8 %扬州: 2.8 %无锡: 1.4 %无锡: 1.4 %昆明: 0.8 %昆明: 0.8 %晋城: 0.3 %晋城: 0.3 %杭州: 4.2 %杭州: 4.2 %柳州: 0.3 %柳州: 0.3 %桂林: 0.8 %桂林: 0.8 %武汉: 1.7 %武汉: 1.7 %沈阳: 0.8 %沈阳: 0.8 %济宁: 0.3 %济宁: 0.3 %深圳: 0.3 %深圳: 0.3 %温州: 0.6 %温州: 0.6 %湖州: 2.2 %湖州: 2.2 %漯河: 3.7 %漯河: 3.7 %潜江: 0.3 %潜江: 0.3 %石家庄: 0.6 %石家庄: 0.6 %绵阳: 0.3 %绵阳: 0.3 %芒廷维尤: 9.0 %芒廷维尤: 9.0 %芝加哥: 3.9 %芝加哥: 3.9 %蒙哥马利: 0.6 %蒙哥马利: 0.6 %衡阳: 0.6 %衡阳: 0.6 %衢州: 0.6 %衢州: 0.6 %西宁: 3.7 %西宁: 3.7 %西安: 0.3 %西安: 0.3 %贵阳: 0.3 %贵阳: 0.3 %运城: 1.1 %运城: 1.1 %遵义: 0.3 %遵义: 0.3 %郑州: 0.3 %郑州: 0.3 %重庆: 0.8 %重庆: 0.8 %长沙: 0.6 %长沙: 0.6 %青岛: 0.6 %青岛: 0.6 %其他其他上海东莞保定兰州北京南京南宁南昌南通台州合肥唐山喀什嘉兴夏延大同天津太原宁波宜春宣城宿州宿迁巴音郭楞常州常德广州弗吉张家口成都扬州无锡昆明晋城杭州柳州桂林武汉沈阳济宁深圳温州湖州漯河潜江石家庄绵阳芒廷维尤芝加哥蒙哥马利衡阳衢州西宁西安贵阳运城遵义郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (79) PDF downloads(0) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return