Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 42 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
ZHANG Lixin, ZHANG Shuangshuang, ZHANG Yuwei, CHEN Jingmin, AN Boru, ZHANG Lei. SCREENING AND PERFORMANCE EVALUATION OF AN AMINE-BASED BIPHASIC SOLVENT FOR CARBON CAPTURE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 201-208. doi: 10.13205/j.hjgc.202410023
Citation: ZHANG Lixin, ZHANG Shuangshuang, ZHANG Yuwei, CHEN Jingmin, AN Boru, ZHANG Lei. SCREENING AND PERFORMANCE EVALUATION OF AN AMINE-BASED BIPHASIC SOLVENT FOR CARBON CAPTURE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 201-208. doi: 10.13205/j.hjgc.202410023

SCREENING AND PERFORMANCE EVALUATION OF AN AMINE-BASED BIPHASIC SOLVENT FOR CARBON CAPTURE

doi: 10.13205/j.hjgc.202410023
  • Received Date: 2023-12-20
    Available Online: 2024-11-30
  • Compared with the traditional organic amine absorber, 30% MEA, the biphasic solvent has more significant development advantages in reducing the energy consumption of CO2 capture. In this paper, monoethanolamine (MEA), hydroxyethyl ethylenediamine (AEEA), diethylenetriamine (DETA) and triethylenetetramine (TETA) with different amino structures were selected as the main absorbers and compounded with the phase-splitting agent diethylethanolamine (DEEA) and water in the ratio of 1∶2∶1, to construct four different biphasic absorption systems. Through a comparative study of their phase splitting performance, absorption-desorption performance, and viscosity characteristics, DEEA+DETA was selected as the most promising biphasic absorption system, and its regeneration energy consumption and cycle stability were investigated in detail. The results showed that the biphasic solvent of DEEA+DETA, with a wide range of split-phase loading and moderate viscosity, has an absorption load of up to 3.26 mol/L, a cyclic capacity of 2.52 mol/L, and a low regeneration energy consumption of 2.55 GJ/t CO2, 32.9% lower than that of 30% MEA. It still maintained high absorption-desorption performance and good cyclic stability after 10 cycles.
  • loading
  • [1]
    蔡博峰, 李琦, 张贤, 等.中国二氧化碳捕集利用与封存 (CCUS) 年度报告 (2021)——中国 CCUS 路径研究[R].生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 中国21世纪议程管理中心. 2021.
    [2]
    白永锋, 王争荣, 詹国雄, 等.燃煤电厂碳捕集模拟及节能优化[J].环境工程, 2023, 41(9): 61-71.
    [3]
    刁保圣, 顾欣, 冯琰磊.大规模二氧化碳捕集及综合利用示范[J].锅炉技术, 2021, 52(6): 76-80.
    [4]
    刘克峰, 刘陶然, 蔡勇, 等.二氧化碳捕集技术研究和工程示范进展[J].化工进展, 2024,43(6):2901-2914.
    [5]
    胡殿儒. 15万t/a燃烧后CO2捕集和封存项目化学吸附剂选择方案[J].环境工程, 2023, 41(增刊2): 1178-1179,1185.
    [6]
    ROSLI A, AHMAD A L, LIM J K, et al. Advances in liquid absorbents for CO2 capture: a review[J].Journal of Physical Science, 2017, 28: 121-141.
    [7]
    杨菲, 刘苗苗, 陆诗建, 等.适用于烟气CO2捕集的相变吸收剂研究进展[J]. 低碳化学与化工, 2023, 48(2): 113-120.
    [8]
    PINTO D D D, KNUUTILA H, FYTIANOS G, et al.CO2 post combustion capture with a phase change solvent.Pilot plant campaign[J].International Journal of Greenhouse Gas Control, 2014, 31: 153-164.
    [9]
    PINTO D D D, ZAIDY S, HARTONO A, et al. Evaluation of a phase change solvent for CO2 capture: absorption and desorption tests[J]. International Journal of Greenhouse Gas Control, 2014, 28: 318-327.
    [10]
    周武. 基于三乙烯四胺的两种相变吸收体系捕集烟气CO2的试验研究[D].南昌:华东交通大学, 2022.
    [11]
    刘飞. 胺基两相吸收剂捕集二氧化碳机理研究[D].杭州:浙江大学, 2020.
    [12]
    ZHANG S, SHEN Y, SHAO P, et al. Kinetics, thermodynamics, and mechanism of a novel biphasic solvent for CO2 capture from flue gas[J]. Environmental Science & Technology, 2018, 52(6): 3660-3668.
    [13]
    ZHOU X B, LIU F, LV B H, et al. Evaluation of the novel biphasic solvents for CO2 capture: performance and mechanism[J]. International Journal of Greenhouse Gas Control, 2017, 60: 120-128.
    [14]
    ZHOU X B, JING G H, LV B H, et al. Low-viscosity and efficient regeneration of CO2 capture using a biphasic solvent regulated by 2-amino-2-methyl-1-propanol[J]. Applied Energy, 2019, 235: 379-390.
    [15]
    涂巍巍. 基于盐析效应开发的CO2相变化吸收剂的分相行为研究[D].北京:北京化工大学, 2018.
    [16]
    LI Y Y, LIU C J, RICHARD P, et al. The CO2 absorption and desorption performance of the triethylenetetramine+N, N-diethylethanolamine+H2O system[J]. Chinese Journal of Chemical Engineering, 2018, 26(11): 2351-2360.
    [17]
    KATARZYNA S, HANNA K P. Heat of absorption of CO2 in aqueous N, N-diethylethanolamine+N-methyl-1,3-propanediamine solutions at 313 K[J]. Chinese Journal of Chemical Engineering, 2019, 27(3): 628-633.
    [18]
    OCHEDI F O, YU J, YU H, et al. Carbon dioxide capture using liquid absorption methods: a review[J]. Environmental Chemistry Letters, 2021, 19(1): 77-109.
    [19]
    GALINDO P, SCHAFFER A, BRECHTEL K, et al. Experimental research on the performance of CO2-loaded solutions of MEA and DEA at regeneration conditions[J].Fuel, 2012, 101: 2-8.
    [20]
    CHATTOPADHYAY D K, WEBSTER D C. Thermal stability and flame retardancy of polyurethanes[J]. Progress in Polymer Science, 2009, 34(10): 1068-1133.
    [21]
    BERTINI F, CANETTI M, PATRUCCO A, et al. Wool keratin-polypropylene composites: properties and thermal degradation[J]. Polymer Degradation and Stability, 2013, 98(5): 980-987.
    [22]
    安山龙. 相变溶剂吸收二氧化碳反应动力学研究[D].北京:华北电力大学, 2017.
    [23]
    吕超, 张习文, 金理健, 等.新型两相吸收剂-离子液体系统高效捕获CO2[J].化工进展, 2023, 42(6): 3226-3232.
    [24]
    张克舫, 刘中良, 王远亚, 等.化学吸收法CO2捕集解吸能耗的分析计算[J].化工进展, 2013, 32(12): 3008-3014.
    [25]
    KORTUNOV P V, BAUGH L S, SISKIN M, et al. In situ NMR mechanistic studies of carbon dioxide reactions with liquid amines in mixed base systems: the interplay of Lewis and Brønsted basicity[J].Energy & Fuels, 2015,29(9): 5967-5989.
    [26]
    KORTUNOV P V, SISKIN M, PACCAGNINI M, et al.CO2 reaction mechanisms with hindered alkanolamines: control and promotion of reaction pathways[J].Energy & Fuels, 2016, 30: 1223-1236.
    [27]
    ARONU U E, GONDAL S, HESSEN E T, et al. Solubility of CO2 in 15, 30, 45 and 60 mass% MEA from 40 to 120 ℃ and model representation using the extended UNIQUAC framework[J].Chemical Engineering Science, 2011, 66(24): 6393-6406.
    [28]
    XU Z C, WANG S J, CHEN C H. CO2 absorption by biphasic solvents: mixtures of 1,4-butanediamine and 2-(diethylamino)-ethanol[J]. International Journal of Greenhouse GasControl, 2013, 16: 107-115.
    [29]
    GUO C, CHEN S, ZHANG Y. A 13C NMR study of carbon dioxide absorption and desorption in pure and blended 2-(2-aminoethylamine)ethanol (AEEA) and 2-amino-2-methyl-1-propanol (AMP) solutions[J]. International Journal of Greenhouse Gas Control, 2014, 28: 88-95.
    [30]
    张欢, 汪丽, 叶舣, 等.乙二烯三胺与三乙醇胺混合胺溶液CO2吸收剂研究[J].发电技术, 2022, 43(4): 609-617.
    [31]
    周小斌. 新型两相胺吸收剂捕集二氧化碳研究[D].泉州:华侨大学, 2019.
    [32]
    LI L, VOICE A K, LI H, et al. Amine blends using concentrated piperazine[J].Energy Procedia, 2013, 37: 353-369.
    [33]
    张琪悦, 方梦祥, 周康, 等.燃煤烟气碳捕集两相吸收剂开发及其性能研究[J].热力发电, 2023, 52(4): 24-33.
    [34]
    林海周, 吴大卫, 范永春, 等.燃煤电厂烟气CO2化学吸收捕集液-液两相吸收剂开发进展[J].洁净煤技术, 2023, 29(4): 21-30.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (20) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return