Citation: | XUAN Gan, TANG Baiyang, LI Yuting, ZHANG Xitong, LIU Weijing, CAO Jiashun, LUO Jingyang, FENG Qian. RESEARCH PROGRESS ON MONITORING METHODS OF DIRECT CARBON EMISSIONS FROM URBAN SEWAGE COLLECTING SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 13-21. doi: 10.13205/j.hjgc.202411002 |
[1] |
BASSOUS N J, RODRIGUEZ A C, LEAL C I L, et al. Significance of various sensing mechanisms for detecting local and atmospheric greenhouse gases: a review[J]. Advanced Sensor Research, 2023, 3(2).
|
[2] |
苑心, 李轩, 胡言午, 等. 隐形的地下碳源:城市排水管道CH4排放[J]. 给水排水, 2022, 58(9): 139-146.
|
[3] |
郝晓地, 杨文宇, 林甲. 不可小觑的化粪池甲烷碳排量[J]. 中国给水排水, 2017, 33(10): 28-33.
|
[4] |
朱黔沫, 陈浩, 叶建锋. 城市排水系统的碳排放特征与减排策略综述[J]. 净水技术, 2024, 43(3): 47-60.
|
[5] |
JIN P, GU Y, SHI X, et al. Non-negligible greenhouse gases from urban sewer system[J]. Biotechnol Biofuels, 2019, 12(1): 100.
|
[6] |
GAO Y, SHI X, JIN X, et al. A critical review of wastewater quality variation and in-sewer processes during conveyance in sewer systems[J]. Water Research, 2023, 228.
|
[7] |
LIU Y, TUGTAS A E, SHARMA K R, et al. Sulfide and methane production in sewer sediments: field survey and model evaluation[J]. Water Research, 2016, 89: 142-150.
|
[8] |
唐柏杨, 宣干, 杨诗瑶, 等. 重新审视化粪池的温室效应:回顾与展望[J]. 环境工程, 2023, 41(7): 14-21.
|
[9] |
王钊越, 赵夏滢, 唐琳慧, 等. 城市污水收集与处理系统碳排放监测评估技术研究进展[J]. 环境工程, 2022, 40(6): 77-82
,161.
|
[10] |
ELMITWALLI T. Sludge accumulation and conversion to methane in a septic tank treating domestic wastewater or black water[J]. Water Science and Technology, 2013, 68(4): 956-964.
|
[11] |
CRITES R, TCHOBANOGLOUS G. Small and Decentralized Wastewater Management Systems[M]. Boston: WCB/McGraw-Hill, 1998.
|
[12] |
BEAL C D, GARDNER E A, MENZIES N W. Process, performance, and pollution potential: a review of septic tank-soil absorption systems[J]. Soil Research, 2005, 43(7).
|
[13] |
汪钟凝, 陈浩, 周雅菲, 等. 水力水质条件对重力排水管道碳排放的影响研究[J]. 能源环境保护, 2019, 33(3): 15-22.
|
[14] |
MANNINA G, BUTLER D, BENEDETTI L, et al. Greenhouse gas emissions from integrated urban drainage systems: where do we stand?[J]. Journal of Hydrology, 2018, 559: 307-314.
|
[15] |
LIU Y, SHARMA K R, NI B J, et al. Effects of nitrate dosing on sulfidogenic and methanogenic activities in sewer sediment[J]. Water Research, 2015, 74: 155-165.
|
[16] |
LIU Y, NI B J, SHARMA K R, et al. Methane emission from sewers[J]. Science of the Total Environment, 2015, 524/525: 40-51.
|
[17] |
LIU Y, SHARMA K R, MURTHY S, et al. On-line monitoring of methane in sewer air[J]. Scientific Reports, 2014, 4: 6637.
|
[18] |
WILLIS J, BARNES R, FILLMORE L, et al. Quantifying methane evolution from sewers: phase 1 results of the WERF/DeKalb County, Georgia, case study[C]//WEFTEC 2010. Water Environment Federation, 2010: 5411-5419.
|
[19] |
ZAWARTKA P, BURCHART-KOROL D, BLAUT A. Model of carbon footprint assessment for the life cycle of the system of wastewater collection, transport and treatment[J]. Scientific Reports, 2020, 10(1): 5799.
|
[20] |
周瑜.昆明市下水道中甲烷产排污系数研究[D].昆明:昆明理工大学,2013.
|
[21] |
黄建洪.城市生活排水系统废气产排污系数核算研究[D].昆明:昆明理工大学, 2013.
|
[22] |
杨温娜.城市污水输送过程中管网内温室气体的产生机制[D].西安:西安建筑科技大学, 2018.
|
[23] |
严铁生.城市不同区域下水道中毒害气体分布规律研究[D]. 西安:长安大学,2017.
|
[24] |
CHEN H, YE J, ZHOU Y, et al. Variations in CH4 and CO2 productions and emissions driven by pollution sources in municipal sewers: an assessment of the role of dissolved organic matter components and microbiota[J]. Environment Pollution, 2020, 263(Pt A): 114489.
|
[25] |
EIJO-RÍO E, PETIT-BOIX A, VILLALBA G, et al. Municipal sewer networks as sources of nitrous oxide, methane, and hydrogen sulphide emissions: a review and case studies[J]. Journal of Environmental Chemical Engineering, 2015, 3(3): 2084-2094.
|
[26] |
GU D, LIU Y, ZHAO W, et al. Status of research on greenhouse gas emissions from wastewater collection systems[J]. Water, 2023, 15(14).
|
[27] |
MASSARA T M, MALAMIS S, GUISASOLA A, et al. A review on nitrous oxide (N2O) emissions during biological nutrient removal from municipal wastewater and sludge reject water[J]. Science of the Total Environment, 2017, 596/597: 106-123.
|
[28] |
SONG C, ZHU J J, WILLIS J L, et al. Methane emissions from municipal wastewater collection and treatment systems[J]. Environmental Science & Technology, 2023, 57(6): 2248-2261.
|
[29] |
郝晓地, 杨振理, 张益宁, 等. 排水管道中CH4、H2S与N2O的产生机制及其控制策略[J]. 环境工程学报, 2023, 17(1): 1-12.
|
[30] |
COOKSON E S, DETWILER R L. Global patterns and temporal trends of perfluoroalkyl substances in municipal wastewater: a meta-analysis[J]. Water Research, 2022, 221: 118784.
|
[31] |
CHEN J, WANG H, YIN W, et al. Deciphering carbon emissions in urban sewer networks: bridging urban sewer networks with city-wide environmental dynamics[J]. Water Research, 2024, 256: 121576.
|
[32] |
梁光清. 半导体激光吸收光谱技术在污水管网气体监测中的应用[J]. 自动化与仪表, 2020, 35(11): 53-55
,69.
|
[33] |
LIU Y, SHARMA K R, FLUGGEN M, et al. Online dissolved methane and total dissolved sulfide measurement in sewers[J]. Water Research, 2015, 68: 109-118.
|
[34] |
SHORT M D, DAIKELER A, PETERS G M, et al. Municipal gravity sewers: an unrecognised source of nitrous oxide[J]. Science of the Total Environment, 2014, 468/469: 211-218.
|
[35] |
梁光清. 基于激光甲烷检测技术的危险源气体监控终端的设计[J].自动化与仪器仪表, 2021, (1): 108-111.
|
[36] |
DIAZ-VALBUENA L R, LEVERENZ H L, CAPPA C D, et al. Methane, carbon dioxide, and nitrous oxide emissions from septic tank systems[J]. Environmental Science & Technology, 2011, 45(7): 2741-2747.
|
[37] |
LEVERENZ H L, TCHOBANOGLOUS G, DARBY J L. Evaluation of Greenhouse Gas Emissions From Septic Systems[M]. Alexandria, VA: Water Environment Research Foundation, 2010.
|
[38] |
TRUHLAR A M, RAHM B G, BROOKS R A, et al. Greenhouse gas emissions from septic systems in New York State[J]. Journal of Environmental Quality, 2016, 45(4): 1153-1160.
|
[39] |
HUYNH L T, HARADA H, FUJII S, et al. Greenhouse gas emissions from blackwater septic systems[J]. Environmental Science & Technology, 2021, 55(2): 1209-1217.
|
[40] |
MOONKAWIN J, HUYNH L T, SCHNEIDER M Y, et al. Challenges to accurate estimation of methane emission from septic tanks with long emptying intervals[J]. Environmental Science & Technology, 2023, 57(43): 16575-16584.
|
[41] |
FOLEY J, YUAN Z, KELLER J, et al. N2O and CH4 Emission from Wastewater Collection and Treatment Systems: Technical Report[M]. London: Global Water Research Coalition, 2011.
|
[42] |
GUISASOLA A, DE HAAS D, KELLER J, et al. Methane formation in sewer systems[J]. Water Research, 2008, 42(6/7): 1421-1430.
|
[43] |
CHAOSAKUL T, KOOTTATEP T, POLPRASERT C. A model for methane production in sewers[J]. Journal of Environmental Science and Health, Part A, 2014, 49(11): 1316-1321.
|
[44] |
中华人民共和国住房和城乡建设部.城镇排水设施气体的检测方法: CJ/T 307—2009[S]. 北京:中国标准出版社,2009.
|
[45] |
刘艳涛,卢金锁,丁超.污水管道有害性气体分布规律模型研究[J].给水排水,2017,53(4):111-115.
|
[46] |
朱英.污水管道机器人视觉SLAM研究[D].成都:西南交通大学,2018.
|
[1] | WANG Hang, WANG Xiankai, CHEN Xiang, LI Kun, QIAO Xueyuan, LIU Feng, DONG Bin. CARBON EMISSION ANALYSIS OF COLLABORATIVE TREATMENT OF MUNICIPAL ORGANIC SOLID WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 66-72. doi: 10.13205/j.hjgc.202402008 |
[2] | HAO Jingyu, CHEN Shuxian, CHEN Xiang, WANG Xiankai, WANG Hang, HUA Yu, DAI Xiaohu. APPLICATION AND PROSPECTS OF PYROLYSIS CARBONIZATION TECHNOLOGY IN SLUDGE TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 261-275. doi: 10.13205/j.hjgc.202409026 |
[3] | WANG Tao, LING Xiaolong, DONG Yuanyuan, BU Jiuhe, HU Xiaohui. EFFECT OF TYPICAL FLOCCULANTS ON FORMATION AND ADSORPTION CHARACTERISTICS OF SLUDGE-DERIVED HYDROCHAR[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 166-173. doi: 10.13205/j.hjgc.202412020 |
[4] | ZHANG Jianjun, WANG Baoqiang, CAI Jiqi, JIANG Yingjie, RAN Jiaying. OPTIMIZATION MODEL AND MICROSCOPIC MECHANISM ANALYSIS OF A MULTI-SOLID WASTE ACTIVATOR[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 196-203. doi: 10.13205/j.hjgc.202404023 |
[5] | LI Xingwu, YUAN Shushan, YE Han, WANG Zhongyi, OUYANG Lan, LIANG Sha, HU Jingping, YANG Jiakuan. ANALYSIS OF FLUE GAS CHARACTERISTICS AND PROCESS OPTIMIZATION OF CEMENT KILN CO-PROCESSING MUNICIPAL SLUDGE BASED ON ASPEN PLUS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 206-214. doi: 10.13205/j.hjgc.202405026 |
[6] | LENG Jiewen, SHI Ke, WANG Xuejing, KOU Wei, FU Xiaowei, SUN Zhaonan. ADSORPTION OF TETRACYCLINE ON BIOCHAR PREPARED FROM MUNICIPAL SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 75-82. doi: 10.13205/j.hjgc.202405010 |
[7] | ZHANG Yefan, ZHENG Zhiyong, CAO Qihao, ZHU Fukang, PAN Hui, LI Chong, YANG Hanwen, LIU He. A COLLABORATIVE TREATMENT PROCESS FOR MUNICIPAL SURPLUS SLUDGE AND THERMAL PRESS FILTRATE FROM CYANOBACTERIAL SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 24-29. doi: 10.13205/j.hjgc.202302004 |
[8] | DONG Wenyi, DU Hong, ZENG Yuanxin, HUANG Xiao, WANG Hongjie, DAI Zhongyi. REVIEW OF PRETREATMENT PROCESS FOR MUNICIPAL SLUDGE FERMENTATION FOR PRODUCING VOLATILE FATTY ACIDS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 241-251. doi: 10.13205/j.hjgc.202307033 |
[9] | WU Jiahuan, ZHANG Yueqi, ZHU Ming, YANG Guang, WANG Wenxiang, JIANG Hongxing, DUAN Pengfei, JIANG Peng, YUAN Haoran, CHEN Yong. WATER COMBINATION TYPES AND SPATIAL DISTRIBUTION OF RESIDUAL WATER IN SLUDGE CAKE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 42-48. doi: 10.13205/j.hjgc.202303006 |
[10] | LI Qiushi, GUO Xiang, LIU Bin, LIN Fawei, ZHAO Yingxin. STUDY ON METHANE PRODUCTION BY THERMOPHILIC ANAEROBIC DIGESTION OF MUNICIPAL SLUDGE AND CORN STRAW[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 139-145. doi: DOI:10.13205/j.hjgc.202207020 |
[11] | ZHAO Shan, GUO Xue-bin, YANG Xiao-fang, WANG Dong-sheng. RESEARCH ON VOLATILE SULFIDE (VSC) AND AMMONIA EMISSION LAW IN PROCESS OF MUNICIPAL SLUDGE COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 82-88. doi: 10.13205/j.hjgc.202102013 |
[12] | XIONG Ying, BAI Dong-rui, ZHANG Tao, LIU Yi, LIU Yan-ting, CHEN Tan, WANG Hong-tao, YANG Ting, JIN Jun, ZHOU Ping, GUO Fang. FEASIBILITY INVESTIGATION ON AEROBIC COMPOSTING OF MUNICIPAL SLUDGE SUPPLEMENTED WITH LESS PROPORTION OF GREEN WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 153-160. doi: 10.13205/j.hjgc.202103022 |
[13] | LIAN Guang-hu, CHENG Gang, ZHANG Lin-yu, ZHANG Yu, SONG Zhi-jun, XU Xiao-jie, WEN Yu-ting, CAI Mei-qiang. SLUDGE DEWATERING PERFORMANCE ENHANCEMENT BY HYDRODYNAMIC CAVITATION-ACIDIFICATION CONDITIONING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 96-100,70. doi: 10.13205/j.hjgc.202008016 |
[14] | GUO Xiao-peng, LI Jun-qi. EXPERIMENTAL STUDY ON FROST RESISTANCE PERFORMANCE OF PERMEABLE BRICK PAVEMENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 53-58. doi: 10.13205/j.hjgc.202004010 |
[15] | DENG Qing-hua, ZHANG Jian, XIAN-Ping, FANG Qing, MENG Zheng-cheng. IMPROVING ANAEROBIC DIGESTIBILITY OF SLUDGE PRETREATED BY THERMAL HYDROLYSIS AND BANANA STRAW ADDED[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 144-149. doi: 10.13205/j.hjgc.202005025 |
[16] | LIU Er-yan, XUE Fei, XU Shi-hong, LI Deng-xin. EFFECT OF MICROWAVE AND LYSOZYME JOINT TREATMENT ON THE DEWATERING PERFORMANCE OF PRINTING AND DYEING SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 13-17,42. doi: 10.13205/j.hjgc.202005003 |