Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
XUAN Gan, TANG Baiyang, LI Yuting, ZHANG Xitong, LIU Weijing, CAO Jiashun, LUO Jingyang, FENG Qian. RESEARCH PROGRESS ON MONITORING METHODS OF DIRECT CARBON EMISSIONS FROM URBAN SEWAGE COLLECTING SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 13-21. doi: 10.13205/j.hjgc.202411002
Citation: XUAN Gan, TANG Baiyang, LI Yuting, ZHANG Xitong, LIU Weijing, CAO Jiashun, LUO Jingyang, FENG Qian. RESEARCH PROGRESS ON MONITORING METHODS OF DIRECT CARBON EMISSIONS FROM URBAN SEWAGE COLLECTING SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 13-21. doi: 10.13205/j.hjgc.202411002

RESEARCH PROGRESS ON MONITORING METHODS OF DIRECT CARBON EMISSIONS FROM URBAN SEWAGE COLLECTING SYSTEMS

doi: 10.13205/j.hjgc.202411002
  • Received Date: 2024-09-11
    Available Online: 2025-01-16
  • Urban sewage collecting system plays a crucial role in transporting sewage to wastewater treatment plants, comprising key components such as septic tanks, sewer pipelines, and sewage lift stations. The existing research indicates that during operation, various units of the sewage collecting system emit greenhouse gases (GHGs) including methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O). Efficient and accurate monitoring of GHGs emissions in the sewage collecting system is essential for a comprehensive understanding of carbon emissions and informing the development of effective emission reduction measures. Based on the findings of existing research, this review synthesizes the methodologies for monitoring direct carbon emissions in urban sewage collecting systems, and offers recommendations and future directions for carbon emission monitoring, thereby contributing to the research advancement in the field of wastewater collection systems’ carbon emissions.
  • [1]
    BASSOUS N J, RODRIGUEZ A C, LEAL C I L, et al. Significance of various sensing mechanisms for detecting local and atmospheric greenhouse gases: a review[J]. Advanced Sensor Research, 2023, 3(2).
    [2]
    苑心, 李轩, 胡言午, 等. 隐形的地下碳源:城市排水管道CH4排放[J]. 给水排水, 2022, 58(9): 139-146.
    [3]
    郝晓地, 杨文宇, 林甲. 不可小觑的化粪池甲烷碳排量[J]. 中国给水排水, 2017, 33(10): 28-33.
    [4]
    朱黔沫, 陈浩, 叶建锋. 城市排水系统的碳排放特征与减排策略综述[J]. 净水技术, 2024, 43(3): 47-60.
    [5]
    JIN P, GU Y, SHI X, et al. Non-negligible greenhouse gases from urban sewer system[J]. Biotechnol Biofuels, 2019, 12(1): 100.
    [6]
    GAO Y, SHI X, JIN X, et al. A critical review of wastewater quality variation and in-sewer processes during conveyance in sewer systems[J]. Water Research, 2023, 228.
    [7]
    LIU Y, TUGTAS A E, SHARMA K R, et al. Sulfide and methane production in sewer sediments: field survey and model evaluation[J]. Water Research, 2016, 89: 142-150.
    [8]
    唐柏杨, 宣干, 杨诗瑶, 等. 重新审视化粪池的温室效应:回顾与展望[J]. 环境工程, 2023, 41(7): 14-21.
    [9]
    王钊越, 赵夏滢, 唐琳慧, 等. 城市污水收集与处理系统碳排放监测评估技术研究进展[J]. 环境工程, 2022, 40(6): 77-82

    ,161.
    [10]
    ELMITWALLI T. Sludge accumulation and conversion to methane in a septic tank treating domestic wastewater or black water[J]. Water Science and Technology, 2013, 68(4): 956-964.
    [11]
    CRITES R, TCHOBANOGLOUS G. Small and Decentralized Wastewater Management Systems[M]. Boston: WCB/McGraw-Hill, 1998.
    [12]
    BEAL C D, GARDNER E A, MENZIES N W. Process, performance, and pollution potential: a review of septic tank-soil absorption systems[J]. Soil Research, 2005, 43(7).
    [13]
    汪钟凝, 陈浩, 周雅菲, 等. 水力水质条件对重力排水管道碳排放的影响研究[J]. 能源环境保护, 2019, 33(3): 15-22.
    [14]
    MANNINA G, BUTLER D, BENEDETTI L, et al. Greenhouse gas emissions from integrated urban drainage systems: where do we stand?[J]. Journal of Hydrology, 2018, 559: 307-314.
    [15]
    LIU Y, SHARMA K R, NI B J, et al. Effects of nitrate dosing on sulfidogenic and methanogenic activities in sewer sediment[J]. Water Research, 2015, 74: 155-165.
    [16]
    LIU Y, NI B J, SHARMA K R, et al. Methane emission from sewers[J]. Science of the Total Environment, 2015, 524/525: 40-51.
    [17]
    LIU Y, SHARMA K R, MURTHY S, et al. On-line monitoring of methane in sewer air[J]. Scientific Reports, 2014, 4: 6637.
    [18]
    WILLIS J, BARNES R, FILLMORE L, et al. Quantifying methane evolution from sewers: phase 1 results of the WERF/DeKalb County, Georgia, case study[C]//WEFTEC 2010. Water Environment Federation, 2010: 5411-5419.
    [19]
    ZAWARTKA P, BURCHART-KOROL D, BLAUT A. Model of carbon footprint assessment for the life cycle of the system of wastewater collection, transport and treatment[J]. Scientific Reports, 2020, 10(1): 5799.
    [20]
    周瑜.昆明市下水道中甲烷产排污系数研究[D].昆明:昆明理工大学,2013.
    [21]
    黄建洪.城市生活排水系统废气产排污系数核算研究[D].昆明:昆明理工大学, 2013.
    [22]
    杨温娜.城市污水输送过程中管网内温室气体的产生机制[D].西安:西安建筑科技大学, 2018.
    [23]
    严铁生.城市不同区域下水道中毒害气体分布规律研究[D]. 西安:长安大学,2017.
    [24]
    CHEN H, YE J, ZHOU Y, et al. Variations in CH4 and CO2 productions and emissions driven by pollution sources in municipal sewers: an assessment of the role of dissolved organic matter components and microbiota[J]. Environment Pollution, 2020, 263(Pt A): 114489.
    [25]
    EIJO-RÍO E, PETIT-BOIX A, VILLALBA G, et al. Municipal sewer networks as sources of nitrous oxide, methane, and hydrogen sulphide emissions: a review and case studies[J]. Journal of Environmental Chemical Engineering, 2015, 3(3): 2084-2094.
    [26]
    GU D, LIU Y, ZHAO W, et al. Status of research on greenhouse gas emissions from wastewater collection systems[J]. Water, 2023, 15(14).
    [27]
    MASSARA T M, MALAMIS S, GUISASOLA A, et al. A review on nitrous oxide (N2O) emissions during biological nutrient removal from municipal wastewater and sludge reject water[J]. Science of the Total Environment, 2017, 596/597: 106-123.
    [28]
    SONG C, ZHU J J, WILLIS J L, et al. Methane emissions from municipal wastewater collection and treatment systems[J]. Environmental Science & Technology, 2023, 57(6): 2248-2261.
    [29]
    郝晓地, 杨振理, 张益宁, 等. 排水管道中CH4、H2S与N2O的产生机制及其控制策略[J]. 环境工程学报, 2023, 17(1): 1-12.
    [30]
    COOKSON E S, DETWILER R L. Global patterns and temporal trends of perfluoroalkyl substances in municipal wastewater: a meta-analysis[J]. Water Research, 2022, 221: 118784.
    [31]
    CHEN J, WANG H, YIN W, et al. Deciphering carbon emissions in urban sewer networks: bridging urban sewer networks with city-wide environmental dynamics[J]. Water Research, 2024, 256: 121576.
    [32]
    梁光清. 半导体激光吸收光谱技术在污水管网气体监测中的应用[J]. 自动化与仪表, 2020, 35(11): 53-55

    ,69.
    [33]
    LIU Y, SHARMA K R, FLUGGEN M, et al. Online dissolved methane and total dissolved sulfide measurement in sewers[J]. Water Research, 2015, 68: 109-118.
    [34]
    SHORT M D, DAIKELER A, PETERS G M, et al. Municipal gravity sewers: an unrecognised source of nitrous oxide[J]. Science of the Total Environment, 2014, 468/469: 211-218.
    [35]
    梁光清. 基于激光甲烷检测技术的危险源气体监控终端的设计[J].自动化与仪器仪表, 2021, (1): 108-111.
    [36]
    DIAZ-VALBUENA L R, LEVERENZ H L, CAPPA C D, et al. Methane, carbon dioxide, and nitrous oxide emissions from septic tank systems[J]. Environmental Science & Technology, 2011, 45(7): 2741-2747.
    [37]
    LEVERENZ H L, TCHOBANOGLOUS G, DARBY J L. Evaluation of Greenhouse Gas Emissions From Septic Systems[M]. Alexandria, VA: Water Environment Research Foundation, 2010.
    [38]
    TRUHLAR A M, RAHM B G, BROOKS R A, et al. Greenhouse gas emissions from septic systems in New York State[J]. Journal of Environmental Quality, 2016, 45(4): 1153-1160.
    [39]
    HUYNH L T, HARADA H, FUJII S, et al. Greenhouse gas emissions from blackwater septic systems[J]. Environmental Science & Technology, 2021, 55(2): 1209-1217.
    [40]
    MOONKAWIN J, HUYNH L T, SCHNEIDER M Y, et al. Challenges to accurate estimation of methane emission from septic tanks with long emptying intervals[J]. Environmental Science & Technology, 2023, 57(43): 16575-16584.
    [41]
    FOLEY J, YUAN Z, KELLER J, et al. N2O and CH4 Emission from Wastewater Collection and Treatment Systems: Technical Report[M]. London: Global Water Research Coalition, 2011.
    [42]
    GUISASOLA A, DE HAAS D, KELLER J, et al. Methane formation in sewer systems[J]. Water Research, 2008, 42(6/7): 1421-1430.
    [43]
    CHAOSAKUL T, KOOTTATEP T, POLPRASERT C. A model for methane production in sewers[J]. Journal of Environmental Science and Health, Part A, 2014, 49(11): 1316-1321.
    [44]
    中华人民共和国住房和城乡建设部.城镇排水设施气体的检测方法: CJ/T 307—2009[S]. 北京:中国标准出版社,2009.
    [45]
    刘艳涛,卢金锁,丁超.污水管道有害性气体分布规律模型研究[J].给水排水,2017,53(4):111-115.
    [46]
    朱英.污水管道机器人视觉SLAM研究[D].成都:西南交通大学,2018.
  • Relative Articles

    [1]WANG Hang, WANG Xiankai, CHEN Xiang, LI Kun, QIAO Xueyuan, LIU Feng, DONG Bin. CARBON EMISSION ANALYSIS OF COLLABORATIVE TREATMENT OF MUNICIPAL ORGANIC SOLID WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 66-72. doi: 10.13205/j.hjgc.202402008
    [2]HAO Jingyu, CHEN Shuxian, CHEN Xiang, WANG Xiankai, WANG Hang, HUA Yu, DAI Xiaohu. APPLICATION AND PROSPECTS OF PYROLYSIS CARBONIZATION TECHNOLOGY IN SLUDGE TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 261-275. doi: 10.13205/j.hjgc.202409026
    [3]WANG Tao, LING Xiaolong, DONG Yuanyuan, BU Jiuhe, HU Xiaohui. EFFECT OF TYPICAL FLOCCULANTS ON FORMATION AND ADSORPTION CHARACTERISTICS OF SLUDGE-DERIVED HYDROCHAR[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 166-173. doi: 10.13205/j.hjgc.202412020
    [4]ZHANG Jianjun, WANG Baoqiang, CAI Jiqi, JIANG Yingjie, RAN Jiaying. OPTIMIZATION MODEL AND MICROSCOPIC MECHANISM ANALYSIS OF A MULTI-SOLID WASTE ACTIVATOR[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 196-203. doi: 10.13205/j.hjgc.202404023
    [5]LI Xingwu, YUAN Shushan, YE Han, WANG Zhongyi, OUYANG Lan, LIANG Sha, HU Jingping, YANG Jiakuan. ANALYSIS OF FLUE GAS CHARACTERISTICS AND PROCESS OPTIMIZATION OF CEMENT KILN CO-PROCESSING MUNICIPAL SLUDGE BASED ON ASPEN PLUS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 206-214. doi: 10.13205/j.hjgc.202405026
    [6]LENG Jiewen, SHI Ke, WANG Xuejing, KOU Wei, FU Xiaowei, SUN Zhaonan. ADSORPTION OF TETRACYCLINE ON BIOCHAR PREPARED FROM MUNICIPAL SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 75-82. doi: 10.13205/j.hjgc.202405010
    [7]ZHANG Yefan, ZHENG Zhiyong, CAO Qihao, ZHU Fukang, PAN Hui, LI Chong, YANG Hanwen, LIU He. A COLLABORATIVE TREATMENT PROCESS FOR MUNICIPAL SURPLUS SLUDGE AND THERMAL PRESS FILTRATE FROM CYANOBACTERIAL SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 24-29. doi: 10.13205/j.hjgc.202302004
    [8]DONG Wenyi, DU Hong, ZENG Yuanxin, HUANG Xiao, WANG Hongjie, DAI Zhongyi. REVIEW OF PRETREATMENT PROCESS FOR MUNICIPAL SLUDGE FERMENTATION FOR PRODUCING VOLATILE FATTY ACIDS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 241-251. doi: 10.13205/j.hjgc.202307033
    [9]WU Jiahuan, ZHANG Yueqi, ZHU Ming, YANG Guang, WANG Wenxiang, JIANG Hongxing, DUAN Pengfei, JIANG Peng, YUAN Haoran, CHEN Yong. WATER COMBINATION TYPES AND SPATIAL DISTRIBUTION OF RESIDUAL WATER IN SLUDGE CAKE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 42-48. doi: 10.13205/j.hjgc.202303006
    [10]LI Qiushi, GUO Xiang, LIU Bin, LIN Fawei, ZHAO Yingxin. STUDY ON METHANE PRODUCTION BY THERMOPHILIC ANAEROBIC DIGESTION OF MUNICIPAL SLUDGE AND CORN STRAW[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 139-145. doi: DOI:10.13205/j.hjgc.202207020
    [11]ZHAO Shan, GUO Xue-bin, YANG Xiao-fang, WANG Dong-sheng. RESEARCH ON VOLATILE SULFIDE (VSC) AND AMMONIA EMISSION LAW IN PROCESS OF MUNICIPAL SLUDGE COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 82-88. doi: 10.13205/j.hjgc.202102013
    [12]XIONG Ying, BAI Dong-rui, ZHANG Tao, LIU Yi, LIU Yan-ting, CHEN Tan, WANG Hong-tao, YANG Ting, JIN Jun, ZHOU Ping, GUO Fang. FEASIBILITY INVESTIGATION ON AEROBIC COMPOSTING OF MUNICIPAL SLUDGE SUPPLEMENTED WITH LESS PROPORTION OF GREEN WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 153-160. doi: 10.13205/j.hjgc.202103022
    [13]LIAN Guang-hu, CHENG Gang, ZHANG Lin-yu, ZHANG Yu, SONG Zhi-jun, XU Xiao-jie, WEN Yu-ting, CAI Mei-qiang. SLUDGE DEWATERING PERFORMANCE ENHANCEMENT BY HYDRODYNAMIC CAVITATION-ACIDIFICATION CONDITIONING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 96-100,70. doi: 10.13205/j.hjgc.202008016
    [14]GUO Xiao-peng, LI Jun-qi. EXPERIMENTAL STUDY ON FROST RESISTANCE PERFORMANCE OF PERMEABLE BRICK PAVEMENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 53-58. doi: 10.13205/j.hjgc.202004010
    [15]DENG Qing-hua, ZHANG Jian, XIAN-Ping, FANG Qing, MENG Zheng-cheng. IMPROVING ANAEROBIC DIGESTIBILITY OF SLUDGE PRETREATED BY THERMAL HYDROLYSIS AND BANANA STRAW ADDED[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 144-149. doi: 10.13205/j.hjgc.202005025
    [16]LIU Er-yan, XUE Fei, XU Shi-hong, LI Deng-xin. EFFECT OF MICROWAVE AND LYSOZYME JOINT TREATMENT ON THE DEWATERING PERFORMANCE OF PRINTING AND DYEING SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 13-17,42. doi: 10.13205/j.hjgc.202005003
  • Cited by

    Periodical cited type(0)

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.3 %FULLTEXT: 13.3 %META: 86.7 %META: 86.7 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 78.3 %其他: 78.3 %Central District: 1.2 %Central District: 1.2 %上饶: 3.6 %上饶: 3.6 %十堰: 2.4 %十堰: 2.4 %张家口: 1.2 %张家口: 1.2 %杭州: 1.2 %杭州: 1.2 %漯河: 3.6 %漯河: 3.6 %芒廷维尤: 8.4 %芒廷维尤: 8.4 %其他Central District上饶十堰张家口杭州漯河芒廷维尤

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (57) PDF downloads(0) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return