Citation: | LU Qian, WU Yonggui, WANG Yiran, HAN Yiqin. ANALYSIS OF DYNAMIC CHANGES IN CARBON EMISSIONS OF UNDERGROUND RECLAIMED WATER PLANTS IN OPERATION PHASE IN GUIYANG[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 106-114. doi: 10.13205/j.hjgc.202411012 |
[1] |
BOIOCCHI R, VIOTTI P, LANCIONE D, et al. A study on the carbon footprint contributions from a large wastewater treatment plant[J]. Energy Reports,2023,9 (9):274-286.
|
[2] |
董康银, 董秀成. 大国气候博弈对数字经济发展及"碳中和"进程影响研究[J]. 生态经济,2023,39(2):34-40.
|
[3] |
WU Z P, DUAN H, LI K L, et al. A comprehensive carbon footprint analysis of different wastewater treatment plant configurations[J]. Environment Research,2022,214:113818.
|
[4] |
ZHANG Q H, YANG W N, NGO H H, et al. Current status of urban wastewater treatment plants in China[J]. Environment International, 2016,92/93:11-22.
|
[5] |
ALEXANDER L V, ALLEN S K, BINDOFF N L,et al. Climate change 2013: the physical science basis, in contribution of Working Group I (WGI) to the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) [EB/OL] https://www.researchgate.net/publication/266208027
|
[6] |
LASSAUX S, RENZONI R, GERMAIN A. Life cycle assessment of water: from the pumping station to the wastewater treatment plant[J]. International Journal of Life Cycle Assessment,2007,12 (2):118-126.
|
[7] |
孙才志, 姜坤, 赵良仕. 中国水资源绿色效率测度及空间格局研究[J]. 自然资源学报,2017,32(12):1999-2011.
|
[8] |
李薇, 汤烨, 徐毅. 城市污水处理行业污染物减排与CO2协同控制研究[J]. 中国环境科学,2014,34(3):681-687.
|
[9] |
裘湛, 赵刚, 黄翔峰. 污水处理厂N2O的释放特征和减排途径研究[J]. 环境科学与管理,2016,41(4):74-77.
|
[10] |
YOSHIDA H, MONSTER J, SCHEUTZ C. Plant-integrated measurement of greenhouse gas emissions from a municipal wastewater treatment plant[J]. Water Research,2014,61:108-118.
|
[11] |
EI-FADEI M, MASSOUND M. Methane emissions from wastewater management[J]. Environmental Pollution,2001,114:177-185.
|
[12] |
SINGH P, KANSAL A, CARLIELL-MARQUET C. Energy and carbon footprints of sewage treatment methods[J].Journal of Environmental Management,2016,165:22-30.
|
[13] |
郝晓地, 王向阳, 曹达啟, 等. 污水有机物中化石碳排放CO2辨析[J]. 中国给水排水,2018,34(2):13-17.
|
[14] |
中国城镇供水排水协会. 城镇水务系统碳核算与减排路径技术指南[M]. 北京:中国建筑工业出版社,2022.
|
[15] |
中国环境保护产业协会. 污水处理厂低碳运行评价技术规范:T/CAEPI 49—2022[S]. 北京:中国标准出版社,2022.
|
[16] |
生态环境部. 城镇污水处理厂污染物去除协同控制温室气体核算技术指南(试行)[R]. 2018.
|
[17] |
IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories[R]. Switzerland.Intergovernmental Panel on Climate Change,2019.
|
[18] |
王洪臣, 陈加波, 张景炳, 等. 《污水处理厂低碳运行评价技术规范》标准解读及案例展示[J]. 环境工程学报,2023,17(3):705-712.
|
[19] |
余娇,赵荣钦,肖连刚,等. 基于"水—能—碳"关联的城市污水处理系统碳排放研究[J].资源科学, 2020, 42(6):1052-1062.
|
[20] |
杨世琪. 城镇污水处理系统碳核算方法与模型研究[D]. 重庆:重庆大学,2014.
|
[21] |
PARRAVICINI V, SVARDAL K, KRAMPE J. Greenhouse gas emission from wastewater treatment plants[J]. Energy Procedia,2016,97(2):246-253.
|
[23] |
郭盛杰, 黄海伟, 董欣, 等. 中国城镇污水处理行业温室气体排放核算及其时空特征分析[J]. 给水排水,2019,45(4):56-62.
|
[23] |
张程. 污水处理系统碳排放规律研究与量化评价[D]. 西安:西安理工大学,2017.
|
[24] |
孙强强, 陈贻龙. 南方某省城镇污水处理厂碳排放特征[J]. 环境工程学报,2023,17(10):3231-3244.
|
[25] |
谢淘, 汪诚文. 污水处理厂温室气体排放评估[J]. 清华大学学报(自然科学版),2012,52(4):473-477.
|
[26] |
XU X. The carbon footprint analysis of wastewater treatment plants and nitrous oxide emissions from full-scale biological nitrogen removal processes in Spain[D]. Cambridge: Massachusetts Institute of Technology,2013.
|
[27] |
宋宝木, 秦华鹏, 马共强. 污水处理厂运行阶段碳排放动态变化分析:以深圳某污水处理厂为例[J]. 环境科学与技术,2015,38(10):204-209.
|
[28] |
孟红旗, 李红霞, 赵爱平, 等. 市政污水厂典型A2/O工艺低碳运行的系统性评估[J]. 环境科学,2022,44(2):1174-1180.
|
[29] |
MAKTABIFARD M, AWAITEY A, MERTA E, et al. Comprehensive evaluation of the carbon footprint components of wastewater treatment plants located in the Baltic Sea region[J]. Science of the Total Environment,2022,806:150436.
|
[30] |
XI J R, GONG H, ZHANG Y J.The evaluation of GHG emissions from Shanghai municipal wastewater treatment plants based on IPCC and operational data integrated methods (ODIM)[J]. Science of the Total Environment,2021,797(148):967-976.
|
[31] |
蒋富海, 王琴, 张显忠,等. 城镇污水处理厂碳排放核算及减碳案例分析[J]. 给水排水,2023,49(2):42-49.
|
[32] |
鲍志远. 典型城市污水处理工艺温室气体排放特征及减排策略研究[D]. 北京:北京林业大学,2019.
|
[33] |
张玲丽, 顾敦罡, 陆嘉麒, 等. MBBR用于某CAST工艺污水处理厂提标改造的效能及碳排放分析[J]. 环境工程技术学报,2022,13(2):679-686.
|
[34] |
夏天虹, 张清东, 董桂君. 小城镇污水处理厂生命周期的碳排放评估[J]. 四川环境,2018,37(3):135-140.
|
[35] |
何秋杭, 陈奕彤, 乔金岩, 等. 基于月排放数据的北京3座区级污水处理厂年碳排放特征[J]. 环境工程学报,2023, 17(9):2827-2840.
|
[36] |
CHEN W, ZHANG Q, HU L, et al. Understanding the greenhouse gas emissions from China’s wastewater treatment plants:based on life cycle assessment coupled with statistical data[J]. Ecotoxicology and Environmental Safety,2023,259:115007.
|
[37] |
邱勇, 刘雪洁, 石培培, 等. 济南市污水处理厂碳排放特征分析[J]. 环境工程,2023,41(增刊2):218-223.
|
[38] |
PRENDEZ M, LARA-GONZALEZ S. Application of strategies for sanitation management in wastewater treatment plants in order to control/reduce green house gas emission[J]. Journal of Environment Management,2008,88(4):658-664.
|
[39] |
刘文博. 不同城市污水处理工艺中非二氧化碳温室气体的产生与释放[D]. 西安:西安建筑科技大学,2013.
|
[1] | DUAN Huabo, ZHOU Jijiao, ZHAO Nana, LAN Xiaofeng, ZHENG Ruiying, FU Xingrui, CHEN Ying, SUN Jianming. A DIGITAL MANAGEMENT PLATFORM FOR SUPPORTING MUNICIPAL SOLID WASTE CLASSIFICATION: AN APPLICATION CASE OF HUZHOU, ZHEJIANG[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 230-238. doi: 10.13205/j.hjgc.202402027 |
[2] | QIAN Xu, CHEN Pengpeng, XIE Pengcheng, GE Chunling, LUO Wei. AN INTELLIGENT CLASSIFICATION INFRASTRUCTURE SYSTEM FOR COMMUNITY SOLID WASTE: DESIGN AND IMPLEMENTING SCHEME[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 239-246. doi: 10.13205/j.hjgc.202402028 |
[3] | KOU Xingxia, PENG Zhen, ZHANG Meigen, MIAO Shiguang, CHEN Min, ZHAO Xiujuan. RESEARCH PROGRESS IN URBAN AND REGIONAL-SCALE ATMOSPHERIC INVERSIONS OF CARBON SOURCES AND SINKS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 209-217. doi: 10.13205/j.hjgc.202410024 |
[4] | XUAN Gan, TANG Baiyang, LI Yuting, ZHANG Xitong, LIU Weijing, CAO Jiashun, LUO Jingyang, FENG Qian. RESEARCH PROGRESS ON MONITORING METHODS OF DIRECT CARBON EMISSIONS FROM URBAN SEWAGE COLLECTING SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 13-21. doi: 10.13205/j.hjgc.202411002 |
[5] | LU Qian, WU Yonggui, WANG Yiran, HAN Yiqin. ANALYSIS OF DYNAMIC CHANGES IN CARBON EMISSIONS OF UNDERGROUND RECLAIMED WATER PLANTS IN OPERATION PHASE IN GUIYANG[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 106-114. doi: 10.13205/j.hjgc.202411012 |
[6] | MA Ruohan, LI Zhouyan, CAI Teng, NIU Chengxin, WANG Xueye, WANG Zhiwei. RESEARCH PROGRESS ON EMISSION AND CONTROL OF NON-CO2 GREENHOUSE GASES IN MUNICIPAL DRAINAGE NETWORKS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 1-12. doi: 10.13205/j.hjgc.202411001 |
[7] | XIA Qiongqiong, ZHENG Xingcan, GU Miao, LI Mai, SHANG Wei, TIAN Yongying, HUANG Haiwei, ONG Say Leong. CHARACTERIZATION OF SUMMER GREENHOUSE GAS EMISSIONS FROM SEPTIC TANKS AND MEASUMENT OF CH4 EMISSION FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 240-246. doi: 10.13205/j.hjgc.202409023 |
[8] | XIA Jingming, XU Zifeng, TAN Lin. APPLICATION RESEARCH OF LIGHTWEIGHT NETWORK LW-GCNet IN GARBAGE CLASSIFICATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 173-180. doi: 10.13205/j.hjgc.202302023 |
[9] | WANG Qinyi, SHENG Yangyue, SONG Ningning, ZHANG Junqi, ZENG Songxi, QIAN Xiaoyong, QIU Kaipei, LIU Qizhen. PROGRESS OF CH4 AND N2O MONITORING IN FULL-SCALE WASTEWATER TREATMENT PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 51-60. doi: 10.13205/j.hjgc.202310008 |
[10] | NING Lizhe, ZHANG Zhe, CAI Bofeng, ZHOU Caihua. RESEARCH ON CHINA'S REGIONAL AND PROVINCIAL ELECTRICITY GHG EMISSION FACTORS IN 2020[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 222-228. doi: 10.13205/j.hjgc.202303030 |
[11] | CHEN Biaohua, TIAN Meng, XU Ruinian. GREENHOUSE GAS N2O EMISSIONS IN CHEMICAL PRODUCTION AND INDUSTRIAL ABATEMENT TECHNOLOGIES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 82-90. doi: 10.13205/j.hjgc.202310011 |
[12] | WANG Wensheng, NIAN Chengxu, ZHANG Chao, YAN Rupeng, WU Xinquan, ZHANG Xinbo. DESIGN OF AUTOMATIC GARBAGE SORTING BIN FOR NON-RESIDENTIAL AREA BASED ON YOLO v5[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 159-165. doi: 10.13205/j.hjgc.202203024 |
[13] | WANG Jie, GU Weihua, CHEN Zehui, SONG Erxi, SHENG Nan, YAO Wei, WANG Jingwei, QIAN Yichao. ANALYSIS OF PRACTICAL EFFECTS, PROBLEMS AND COUNTERMEASURES OF DOMESTIC WASTE CLASSIFICATION:A CASE STUDY IN ZHILI TOWN, HUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 188-193. doi: 10.13205/j.hjgc.202203028 |
[14] | ZHANG Tong, ZHANG Liqiu, FENG Li, LIU Yongze, DU Ziwen. ANALYSIS OF CHANGES IN CHARACTERISTICS OF KITCHEN WASTE AFTER SORTING AND DOMESTIC WASTE BEFORE SORTING IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 22-28. doi: 10.13205/j.hjgc.202212004 |
[15] | QIU Dezhi, CHEN Chun, GUO Li, LIU Dan, MA Jiahui, LEI Miao, LI Tianning, XU Keke, YAN Xu. CHARACTERISTICS OF GREENHOUSE GAS EMISSIONS FROM MUNICIPAL WASTEWATER TREATMENT PLANTS IN MAJOR URAN GROUPS OF CHINA BASED ON EMISSION FACTOR METHOD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 116-122. doi: 10.13205/j.hjgc.202206015 |
[16] | YAN Qiu-he, WANG Hong-tao, LIU Yan-ting. EVALUATION OF CLASSIFICATION EFFECT OF KITCHEN WASTE AND OTHER WASTE AND ENERGY UTILIZATION EFFICIENCY USING MOISTURE CONTENT: A CASE STUDY OF ZHANGJIAGANG[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 105-109,159. doi: 10.13205/j.hjgc.202102016 |
[17] | YUAN Jian-ye, NAN Xin-yuan, CAI Xin, LI Cheng-rong. GARBAGE IMAGE CLASSIFICATION BY LIGHTWEIGHT RESIDUAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 110-115. doi: 10.13205/j.hjgc.202102017 |
[18] | REN Zhong-shan, CHEN Ying, WANG Yong-ming, TENG Jing-jie, QIAO Peng. ANALYSIS OF INFLUENCE OF DOMESTIC WASTE CLASSIFICATION ON DEVELOPMENT OF WASTE INCINERATION POWER GENERATION INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 150-153,206. doi: 10.13205/j.hjgc.202106022 |
[19] | SUN Xiao-jie, WANG Chun-lian, LI Qian, ZHANG Hong-xia, YE Yu-hang. DEVELOPMENT AND EVOLUTION OF CHINA’S DOMESTIC WASTE CLASSIFICATION POLICY SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 65-70. doi: 10.13205/j.hjgc.202008011 |
[20] | WANG Xiao-cheng, GUO Ying, YAN Kai-hong. TREATMENT OF DOMESTIC WASTE BY ULTRA-HIGH TEMPERATURE SPONTANEOUS HEATING AEROBIC COMPOSTING PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 183-189. doi: 10.13205/j.hjgc.202010029 |