Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
KONG Fan-xin, XIAO Wei-hao, HE Jian-hua, CHEN Jin-fu. CERAMIC MEMBRANE ENHANCED TREATMENT OF POLYMER FLOODING PRODUCED WATER IN HIGH CALCIUM AND MAGNESIUM RESERVOIR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 128-132,72. doi: 10.13205/j.hjgc.202107016
Citation: LIU Xuefeng, LI Huan, WANG Deqi, CHEN Hai, LIU Jianlin, LI Wei, CAO Lianbao, ZHANG Tingting, WEI Bigui. RESEARCH ON LOW-CARBON COMBINATION LAYOUT OF LID FACILITIES IN RESIDENTIAL AREAS BASED ON RESPONSE SURFACE METHODOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 115-130. doi: 10.13205/j.hjgc.202411013

RESEARCH ON LOW-CARBON COMBINATION LAYOUT OF LID FACILITIES IN RESIDENTIAL AREAS BASED ON RESPONSE SURFACE METHODOLOGY

doi: 10.13205/j.hjgc.202411013
  • Received Date: 2023-11-15
    Available Online: 2025-01-16
  • Under the goal of satisfying the total annual runoff control rate, the full life cycle carbon emissions of different LID facility combinations are not the same. In order to obtain a low-carbon combination arrangement scheme of LID facilities in a residential area, the ratio of the whole life cycle carbon emissions of LID facilities to the total runoff control volume was defined as the carbon emission intensity of total runoff control volume, and a model of optimal arrangement of LID facility combinations was constructed to study the carbon emission intensity of a single LID facility in a residential area in Tianshui City, Gansu Province, the research object, and the response surface method was used to optimize the LID facility combination scheme for the residential area. The results of the single LID facility study showed that the carbon emission intensity of green roof was the smallest, ranging from -0.85 kg CO2/m3 to -3.38 kg CO2/m3, and that of permeable paving was the largest, ranging from 0.26 kg CO2/m3 to 0.77 kg CO2/m3. The optimization results of the combination scheme showed that the green roof accounted for 54.93% of the roofing area, permeable paving accounted for 66.90% of the paving area, and rain gardens accounted for 36.30% of the green space area, and then the carbon emission intensity of the community LID facilities was the smallest, -1.58 kg CO2/m3, and the total annual runoff control rate was 91.85%. From the perspective of low-carbon construction, a large area proportion of green roofs should be arranged with the highest priority; and when the total annual runoff control rate fails to meet the requirements, priority should be given to increasing rain garden area appropriately; and permeable paving should be considered last. The research results provide a theoretical basis and technical support for the low-carbon arrangement of low-impact development facilities. From the perspective of low-carbon construction, priority should be given to the arrangement of green roofs with the largest area proportion. When the total annual runoff control rate cannot meet the requirements, priority should be given to rain gardens with appropriate areas, and permeable pavement should be less considered. The research results provide a theoretical basis and technical support for the low-carbon layout of low impact development facilities.
  • [1]
    任南琪, 张建云, 王秀蘅. 全域推进海绵城市建设,消除城市内涝,打造宜居环境[J]. 环境科学学报, 2020, 40(10): 3481-3483.
    [2]
    姜勇, 李海军, 成钢. 基于源头管控的武汉海绵城市规划实施评估[J]. 中国给水排水, 2023, 39(18): 44-48.
    [3]
    郭超, 王璐瑶, 谢潇. 海绵城市LID设施运行效能衰减机理及寿命分析研究综述[J]. 水资源与水工程学报, 2022, 33(5): 45-52

    ,61.
    [4]
    鲁修为. 海绵城市理念下城市低影响开发排水系统设计研究[D]. 武汉:武汉工程大学, 2019.
    [5]
    李俊奇, 孙梦琪, 李小静. 生物滞留设施对雨水径流热污染控制效果试验[J]. 水资源保护, 2022, 38(4): 6-12.
    [6]
    章林伟. 中国海绵城市的定位、概念与策略:回顾与解读国办发[2015] 75号文件[J]. 给水排水, 2021, 57(10): 1-8.
    [7]
    SU X, SHAO W W, LIU J H. How does sponge city construction affect carbon emission from integrated urban drainage system?[J]. Journal of Cleaner Production, 2022, 363:132595.
    [8]
    林晓虎, 任婕, 乔俊莲. 海绵城市建设中碳排放核算研究进展及探析[J]. 资源节约与环保, 2018(3): 42-44.
    [9]
    KAVEHEI E, JENKINS G A, ADAME M F. Carbon sequestration potential for mitigating the carbon footprint of green stormwater infrastructure[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 1179-1191.
    [10]
    陈碧宜. 基于气候变化的低影响开发设施径流量和碳排放控制研究[D]. 广州:广州大学, 2022.
    [11]
    郑涛. 居住社区海绵改造过程的碳排放核算研究[J]. 中国给水排水, 2021, 37(19): 112-119.
    [12]
    朱雨, 邵薇薇, 杨志勇. 海绵设施全生命周期碳减排效应评估:以迁安安顺家园为例[J]. 水资源保护,2023,39(6): 32-38.
    [13]
    李俊奇, 张希, 李惠民. 北京某片区海绵城市建设和运行中的碳排放核算研究[J]. 水资源保护, 2023, 39(4): 86-93.
    [14]
    SHAO W W, LIU J H, YANG Z Y. Carbon reduction effects of sponge city construction: a case study of the City of Xiamen[J]. Energy Procedia, 2018, 152:1145-1151.
    [15]
    LIU J, WANG J, DING X. Assessing the mitigation of greenhouse gas emissions from a green infrastructure-based urban drainage system[J]. Applied Energy, 2020, 278: 115686.
    [16]
    李晨璐, 郑涛, 彭开铭. 基于全生命周期法的海绵城市雨水系统碳排放研究[J]. 环境与可持续发展, 2019, 44(1): 132-137.
    [17]
    中华人民共和国住房和城乡建设部,国家市场监督管理总局. 室外排水设计标准:GB 50014—2021[S]. 北京:中国计划出版社, 2021.
    [18]
    中华人民共和国住房和城乡建设部. 海绵城市建设技术指南——低影响开发雨水系统构建 (试行)[D]. 北京:中国建筑工业出版社, 2014.
    [19]
    中华人民共和国住房和城乡建设部, 中国气象局. 城市暴雨强度公式编制和设计暴雨雨型确定技术导则[M]. 北京: 气象出版社, 2014.
    [20]
    MOHD S L, SHAKIRAH J A, ABDUL M W H A W. High-resolution hydrological-hydraulic modeling of urban floods using InfoWorks ICM[J]. Sustainability, 2021, 13(18): 10259.
    [21]
    刘华超, 梁风超, 徐薇. 基于Infoworks ICM的城市排水(雨水)系统排水能力及内涝风险评估[J]. 城市道桥与防洪, 2021, (12): 71-74.
    [22]
    戎贵文, 甘丹妮, 李姗姗. 不同LID设施的面积比例优选及径流污染控制效果[J]. 水资源保护, 2022, 38(3): 168-173

    ,204.
    [23]
    蒋海红. 基于Infoworks ICM模型的万州城区海绵城市试点建设雨水径流总量模拟分析[D]. 重庆:重庆交通大学, 2019.
    [24]
    吕凤维, 陈垚, 刘非. 不同空间布局下LID设施径流控制效果模拟研究[J]. 中国农村水利水电, 2023(3): 120-129,43.
    [25]
    吕永鹏. 《城镇内涝防治系统数学模型构建和应用规程》解读[J]. 给水排水, 2020, 56(5): 149-153.
    [26]
    李俊奇, 张希, 李惠民. 北京某片区海绵城市建设和运行中的碳排放案例研究[J]. 水资源保护:9(4): 86-93.
    [27]
    张希. 城市雨水系统全生命周期碳排放核算方法及应用研究[D]. 北京:北京建筑大学, 2023.
    [28]
    马洁. 海绵城市建设典型措施的碳源解析和碳排放研究[D]. 太原:山西农业大学, 2018.
    [29]
    张孝存. 绿色建筑结构体系碳排放计量方法与对比研究[D]. 哈尔滨:哈尔滨工业大学, 2014.
    [30]
    REDDY L V A, WEE Y J, YUN J S. Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett-Burman and response surface methodological approaches[J]. Bioresource Technology, 2008, 99(7): 2242-2249.
    [31]
    刘秀芸. 重金属吸附剂巯基乙酰化玉米秸秆除铜性能研究[D]. 兰州:兰州交通大学, 2022.
    [32]
    OU J X, LI J Q, LI X J. Planning and design strategies for green stormwater infrastructure from an urban design perspective[J]. Water, 2023, 16(1): 29.
    [33]
    田敏, 任建民, 刘碧云. 基于SWMM模型与成本效益的LID径流控制效果研究[J]. 水文, 2023, 43(5): 89-94

    ,100.
    [34]
    MOORE T L C, HUNT W F. Predicting the carbon footprint of urban stormwater infrastructure[J]. Ecological Engineering, 2013, 58: 44-51.
    [35]
    马洁, 武小钢. 海绵城市典型措施碳排放研究[J]. 中国城市林业, 2018, 16(2): 27-32.
    [36]
    IAN C, JOHN K, 崔玉忠. 传统路面与透水混凝土路面砖路面隐含碳量的评价[J]. 建筑砌块与砌块建筑, 2012(3): 32-35,25.
    [37]
    郑克白, 徐宏庆, 康晓鹍.北京市《雨水控制与利用工程设计规范》解读[J]. 给水排水, 2014, 50(5): 55-60.
    [38]
    龙昊宇, 黄彬彬, 翁白莎. MnO2@Fe3O4/石墨烯复合材料对水中Pb(Ⅱ)的吸附[J]. 中国环境科学, 2020, 40(7): 2888-2900.
    [39]
    宋永伟, 罗浩伟, 杨俊. Behnken设计优化制备高比表面积柚皮基生物炭及其亚甲基蓝吸附机理研究[J]. 中国环境科学(12): 6363-6373.
    [40]
    陈洁. 典型LID设施对地表径流控制过程的模拟研究[D]. 天津:天津大学, 2022.
    [41]
    ZHAO Z H, LIU C Q, XIE H. Carbon accounting and carbon emission reduction potential analysis of sponge cities based on life cycle assessment[J]. Water, 2023, 15(20): 3565.
    [42]
    范俊鹏. 海绵城市理论下的沣西新城绿色屋顶设计研究[D]. 西安:西安建筑科技大学, 2021.
  • Relative Articles

    [1]XU Changqing, LENG Linyuan, CHEN Zhengxia, JIA Haifeng. LIFE-CYCLE ENVIRONMENTAL AND ECONOMIC BENEFITS ASSESSMENT OF SOURCE CONTROL FACILITIES FOR SPONGE CITY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 144-149. doi: 10.13205/j.hjgc.202401019
    [2]ZHANG Wanjun, CHEN Dan, HU Le, SUN Hao, JI Wei. STUDY ON A CARBON EMISSION METHOD FOR SMALL IRRIGATION PUMPING STATIONS BASED ON HYBRID LIFE CYCLE ASSESSMENT THEORY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 211-219. doi: 10.13205/j.hjgc.202402025
    [3]DU Jiamin, WEI Yuanyuan, DING Chao, ZHU Haochuan, LIU Weijing, TANG Baiyang, YANG Shiyao, FENG Qian. RESEARCH ON LAYOUT OF INTERCEPTION COMBINED SEWER OVERFLOW DETENTION TANKS BASED ON THEIR LIFE CYCLE CARBON EMISSIONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 50-60. doi: 10.13205/j.hjgc.202411006
    [4]HUANG Jiming, LIU Runqing, WU Sizhan, QIN Hangdao, CHEN Jing. PREPARATION AND CHARACTERIZATION OF DEFECTIVE Zr-BASED METAL-ORGANIC FRAMEWORKS AND THEIR ADSORPTION PROPERTIES FOR TETRACYCLINE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 33-40. doi: 10.13205/j.hjgc.202403004
    [5]MIAO Luyuan, JIANG Ye, YAN Tingchun, SHEN Yuexi, WANG Siyi, QUAN Yue. OPTIMIZATION OF ELECTROCHEMICAL OXIDATION FOR TREATING CHLOROBENZENE WASTE GAS BY RESPONSE SURFACE METHODOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 97-104. doi: 10.13205/j.hjgc.202408012
    [6]SHI Yan, ZOU Long, LIANG Yanjie, LIN Zhang, CHAI Liyuan. THE WHOLE-LIFE CYCLE PREVENTION AND CONTROL OF HEAVY METAL POLLUTION: CHALLENGES AND OPPORTUNITIES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 29-35. doi: 10.13205/j.hjgc.202309004
    [7]ZHANG Jiwen, XU Zunzhu, ZHANG Yuwei, CHEN Yuqi, JIN Xiaoxian, LIU Dong, LU Zhaoyang. LIFE CYCLE ASSESSMENT OF COORDINATED TREATMENT OF WASTE GAS POLLUTION AND CARBON REDUCTION IN ANAEROBIC POND IN A PHARMACEUTICAL FACTORY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 192-201. doi: 10.13205/j.hjgc.202303026
    [8]QUAN Zhaoxi, CHEN Xiangsheng, CHEN Feng, GAO Wang, HAN Wenlong. ANALYSIS OF CARBON REDUCTION EFFECT OF TUNNEL CONSTRUCTION MUCK SOIL UTILIZATION BASED ON LIFE CYCLE ASSESSMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 91-98,162. doi: 10.13205/j.hjgc.202310012
    [9]LIANG Wenjun, ZHANG Zhixue, LAN Tong, REN Sida. PREPARATION OF ROAD DUST SUPPRESSANT WITH AGRICULTURAL WASTE STRAW[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 168-176. doi: 10.13205/j.hjgc.202202026
    [10]ZHANG Tingting, KONG Xiangqing, FU Ying, ZHANG Zhenbin, ZHAO Fei, YUAN Dan, ZHOU Yuanming. RESPONSE SURFACE OPTIMIZATION OF GRAPHENE OXIDE PREPARATION USING MUNICIPAL SLUDGE AS THE SUBSTRATE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 25-30,51. doi: DOI:10.13205/j.hjgc.202207004
    [11]HE Wen-shan, ZHANG Ru, LI Si-qi, LI Wen-jin, SONG Zhe-hua, PENG Guang, SHEN Peng, WANG Xiao-hui. SCREENING OF A CHLORTETRACYCLINE-DEGRADING STRAIN AND ITS DEGRADATION CONDITIONS OPTIMIZATION USING RESPONSE SURFACE METHODOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 53-58,66. doi: 10.13205/j.hjgc.202205008
    [12]JIAO Xu-dong, WU Jia, WANG Tao, WU Na, FENG Qiang, FU Ze-qiang, DU Huan-zheng. RESEARCH ON SOLID WASTE CLASSIFICATION AND RESOURCE UTILIZATION BASED ON LIFE CYCLE MANAGEMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 201-206,170. doi: 10.13205/j.hjgc.202110029
    [13]ZHU Kun, ZHOU Jian, HE Qiang, ZHOU Jiong, MENG Hong, HE Xue-jie. COMPREHENSIVE IMPACT OF CARBON TO NITROGEN RATIO, DISSOLVED OXYGEN AND TEMPERATURE ON ADVANCED PHOSPHORUS AND NITROGEN REMOVAL EFFICIENCIES IN SEQUENCING BATCH BIOFILM REACTOR (SBBR) SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 45-50. doi: 10.13205/j.hjgc.202007007
    [18]Zhang Feng Yin Xiuqing Dong Huizhong, . APPLICATION OF COMBINATION GREY MODEL IN CARBON EMISSIONS PREDICTION IN SHANDONG PROVINCE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 147-152. doi: 10.13205/j.hjgc.201502033
  • Cited by

    Periodical cited type(4)

    1. 罗秦格,李航哲,李凯,文刚,黄廷林. 氯化锂共混改性对PVDF超滤膜耐氯性的影响. 环境工程. 2024(09): 148-155 . 本站查看
    2. 吕庆鑫,郭祥林,王世斌,孟庆梅,刘新鹏,高佩玲. 陶瓷膜及其改性在油水分离领域的研究进展. 山东理工大学学报(自然科学版). 2023(01): 54-60 .
    3. 白耀文,王雷,王顺华. 油田氧化锆陶瓷膜技术处理采出水测试研究. 粘接. 2023(07): 119-123 .
    4. 曾正宇,于忠臣. 化学驱采出水处理工艺技术研究进展. 化学工程师. 2023(12): 68-72 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.1 %FULLTEXT: 11.1 %META: 88.9 %META: 88.9 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 63.9 %其他: 63.9 %张家口: 19.4 %张家口: 19.4 %温州: 2.8 %温州: 2.8 %芒廷维尤: 2.8 %芒廷维尤: 2.8 %芝加哥: 2.8 %芝加哥: 2.8 %西宁: 2.8 %西宁: 2.8 %重庆: 2.8 %重庆: 2.8 %长沙: 2.8 %长沙: 2.8 %其他张家口温州芒廷维尤芝加哥西宁重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (32) PDF downloads(0) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return