Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
TONG Jiaxin, LI Yi, ZHANG Wenlong, HOU Xing. RESEARCH ON WATER NETWORK OPTIMIZATION OF HIGH-TECH INDUSTRIAL PARKS FACING LOW-CARBON CONSTRAINTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 153-161. doi: 10.13205/j.hjgc.202411017
Citation: TONG Jiaxin, LI Yi, ZHANG Wenlong, HOU Xing. RESEARCH ON WATER NETWORK OPTIMIZATION OF HIGH-TECH INDUSTRIAL PARKS FACING LOW-CARBON CONSTRAINTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 153-161. doi: 10.13205/j.hjgc.202411017

RESEARCH ON WATER NETWORK OPTIMIZATION OF HIGH-TECH INDUSTRIAL PARKS FACING LOW-CARBON CONSTRAINTS

doi: 10.13205/j.hjgc.202411017
  • Received Date: 2024-09-02
    Available Online: 2025-01-16
  • Exploring the green development model for high-tech industrial parks is crucial to leading the transformation of high-tech industries over China. Low-carbon and near-zero sewage emissions are an effective measure to promote the transformation of the energy structure of high-tech industrial parks under the new situation of carbon peak and carbon neutrality. However, the current research milieu predominantly concentrates on enhancing the efficacy of wastewater treatment and recycling technologies at the local unit level, often overlooking the integrated management of water recycling and carbon emission dynamics across various water-related subsystems at the park-wide scale. This oversight hinders the holistic implementation of low-carbon, near-zero emission practices within the park, thereby impeding the development of a truly sustainable, low-carbon park environment. In light of these challenges, the present study adopts a high-tech industrial parks as its focal point, systematically scrutinizes the water usage patterns, effluent characteristics, and carbon footprint of representative industries within the park, and endeavors to optimize the water network within the industrial park under the constraints of low-carbon objectives. Furthermore, it introduces an innovative model for achieving low-carbon, near-zero emission sewage management in the park. This model, termed "five-level treatment-five-level carbon reduction," is tailored to the existing industrial and hydrological profiles. It adeptly integrates and leverages a spectrum of strategies including "Differentiated utilization-source carbon reduction, Resource recovery-enhanced carbon reduction, Energy conservation and emission reduction-energy regeneration, Deep purification-ecological reuse, Recycling-comprehensive carbon control". This multifaceted approach aims to provide a viable and actionable roadmap for the green and sustainable evolution of high-tech industrial parks, aligning with the broader goal of environmental stewardship and carbon neutrality.
  • [1]
    LEI Y, WANG Z, WANG D, et al. Co-benefits of carbon neutrality in enhancing and stabilizing solar and wind energy[J]. Nature Climate Change, 2023, 13(7): 693.
    [2]
    中华人民共和国工业和信息化部规划司. 中关村论坛有关情况[EB/OL]. (2024-04-17) [2024-07-05]. http://www.news.cn/fortune/20240417/ce06beb86bc24aac871a93b9eb422baf/c.html.
    [3]
    GUO Y, TIAN J, CHEN L, et. al. The role of industrial parks in mitigating greenhouse gas emissions from China[J]. Environmental science & technology, 2018, 52(14): 7754-7762.
    [4]
    惠辞章, 张文龙, 王玉明, 等. 基于"五级处理-五级回用"的高新区污水近零排放新模式[J]. 环境工程, 2022, 40(7): 193-199.
    [5]
    陈艳波, 张宁, 李嘉祺, 等. 零碳园区研究综述及展望[J]. 中国电机工程学报: 2024, 44(14):5496-5516.
    [6]
    赵荣钦,余娇,肖连刚, 等.基于"水—能—碳"关联的城市水系统碳排放研究[J]. 地理学报, 2021, 76(12):3119-3134.
    [7]
    唐振兴.给水系统中碳排放核算及减碳路径分析[J]. 节能与环保, 2023(10):30-35.
    [8]
    张永韬,曹卉,檀科明.湖北某县城长江大保护项目污水管网碳排放量测算探究[J]. 环境保护与循环经济, 2023, 43(6):94-98.
    [9]
    郝晓地, 张益宁, 李季, 等. 污水处理能源中和与碳中和案例分析[J]. 中国给水排水, 2021, 37(20): 1-8.
    [10]
    孙猛, 杨佳林, 肖彭誉, 等. 城市污水低碳和资源化技术进展与新趋势[J]. 环境工程学报, 2023, 17(6): 1748-1760.
    [11]
    李轩,苑心,门聪,等.城市河流CH4和N2O产生及排放研究进展[J].环境科学,2024,45(8):4932-4945.
    [12]
    周鑫, 陈明扬, 罗彬, 等. 近零碳排放园区建设思路和对策建议[J]. 四川环境, 2023, 42(5): 268-273.
    [13]
    TONG T, ELIMELECH M. The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions[J]. Environmental Science & Technology, 2016, 50(13): 6846-6855.
    [14]
    中国城镇供水排水协会. 城镇水务系统碳核算与减排路径技术指南[M].北京:中国建筑工业出版社,2022.
    [15]
    生态环境局,国家统计局. 2021年电力二氧化碳排放因子[EB/OL].https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202404

    /t20240412_1070565.html.2024-11-24.
    [16]
    HAN M, WEI X, WANG R, et al. Recycling Cu(Ⅱ) from complexing copper wastewater using ferrous sulfide stabilized by carboxymethyl cellulose: efficiency and mechanism insights[J/OL]. Separation and Purification Technology, 2024, 330. DOI: 10.1016/j.seppur.2023.125209.
    [17]
    HAN M, HE J, WEI X, et al. Deep purification of copper from Cu(Ⅱ)-EDTA acidic wastewater by Fe(Ⅲ) replacement/diethyldithiocarbamate precipitation[J]. Chemosphere, 2022: 300.
    [18]
    LI S, YUE T, SUN W, et al. Intense removal of Ni(Ⅱ) chelated by EDTA from wastewater via Fe(Ⅲ) replacement-chelating precipitation[J]. Process Safety and Environmental Protection, 2022, 159: 1082-1091.
    [19]
    戴铁军, 潘永刚, 张智愚, 等. 再生资源回收利用与碳减排的定量分析研究[J]. 资源再生, 2021(3): 15-20.
    [20]
    YOO E, LEE U, KELLY J C, et al. Life-cycle analysis of battery metal recycling with lithium recovery from a spent lithium-ion battery[J]. Resources Conservation and Recycling, 2023: 196.
    [21]
    焦在强, 崔垚, 闫兴国, 等. 光伏电站项目全生命周期碳排放研究[J]. 中国资源综合利用, 2023, 41(10): 158-160.
  • Relative Articles

    [1]DONG Wei, GENG Lizhi, FEI Bo. RESEARCH ON CHARACTERISTICS AND REACTIVITY OF VOLATILE ORGANIC COMPOUNDS EMISSION FROM A COKING ENTERPRISE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 161-166. doi: 10.13205/j.hjgc.202402019
    [2]WANG Xiaowei, MIN Chaohui, SONG Jun, ZHANG Jinghua, ZHAO Hongbing, CAO Chen, ZHANG Chi, LIU Tianfu, LIU Jingyin, HUANG Xiaoli, CHEN Liang, LIU Xin. EMISSION CHARACTERISTICS AND WHOLE PROCESS CONTROL IMPLEMENTATION PATH FOR VOCs IN RAILWAY TRANSPORTATION INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 102-111. doi: 10.13205/j.hjgc.202410013
    [3]XIA Qiongqiong, ZHENG Xingcan, GU Miao, LI Mai, SHANG Wei, TIAN Yongying, HUANG Haiwei, ONG Say Leong. CHARACTERIZATION OF SUMMER GREENHOUSE GAS EMISSIONS FROM SEPTIC TANKS AND MEASUMENT OF CH4 EMISSION FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 240-246. doi: 10.13205/j.hjgc.202409023
    [4]HE Zihao, YI Mengting, ZHONG Qiumeng, LIANG Sai. INFLUENCING FACTORS OF SYNERGY DEGREE FOR INDUSTRIAL POLLUTANT AND CARBON REDUCTIONS IN CHINESE CITIES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 206-214. doi: 10.13205/j.hjgc.202401027
    [5]LIU Yanbo, ZHANG Zhaohan, LIU Guohong, SONG Yanfang, LI Jiannan, DUAN Jinhao, FENG Yujie. CONSTRUCTION OF A COMPREHENSIVE IMPACT ASSESSMENT METHOD OF SEWAGE TREATMENT TECHNOLOGY BASED ON LCA-AHP MODEL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 52-59. doi: 10.13205/j.hjgc.202412007
    [6]WANG Biyun, SUN Ailin, XU Xuehuang. STRATEGIES AND PROJECT CASE OF WASTEWATER TREATMENT PLANTS RENEWAL AND REFORMATION FOR THE DUAL-CARBON GOAL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 81-89. doi: 10.13205/j.hjgc.202411009
    [7]FEI Bo, BU Mengya, ZHANG Gangfeng. RESEARCH ON VOCs EMISSION CHARACTERISTICS AND OZONE FORMATION POTENTIAL OF TYPICAL PETROCHEMICAL PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 172-178. doi: 10.13205/j.hjgc.202305023
    [8]WANG Shuo, LU Yunping, LIU Shuyang, CHEN Kangli. CARBON EMISSIONS OF URBAN AND INDUSTRIAL SEWAGE TREATMENT PLANTS OF SUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 173-184. doi: 10.13205/j.hjgc.202310021
    [9]ZHANG Jiwen, XU Zunzhu, ZHANG Yuwei, CHEN Yuqi, JIN Xiaoxian, LIU Dong, LU Zhaoyang. LIFE CYCLE ASSESSMENT OF COORDINATED TREATMENT OF WASTE GAS POLLUTION AND CARBON REDUCTION IN ANAEROBIC POND IN A PHARMACEUTICAL FACTORY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 192-201. doi: 10.13205/j.hjgc.202303026
    [10]Chen Shi, PENG Lai, XU Yifeng, LIANG Chuanzhou, NI Bingjie. RECENT ADVANCES IN MATHEMATICAL MODELING OF NITROUS OXIDES EMISSION DURING BIOLOGICAL NITROGEN REMOVAL FROM WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 97-106,122. doi: 10.13205/j.hjgc.202206013
    [11]LIU Guohua, LI Qinyu, XU Xianglong, QI Lu, WANG Hongchen. RESEARCH PROGRESS OF IFAS PROCESS FOR WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 214-224. doi: 10.13205/j.hjgc.202202032
    [12]QIU Dezhi, CHEN Chun, GUO Li, LIU Dan, MA Jiahui, LEI Miao, LI Tianning, XU Keke, YAN Xu. CHARACTERISTICS OF GREENHOUSE GAS EMISSIONS FROM MUNICIPAL WASTEWATER TREATMENT PLANTS IN MAJOR URAN GROUPS OF CHINA BASED ON EMISSION FACTOR METHOD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 116-122. doi: 10.13205/j.hjgc.202206015
    [13]ZHOU Yi-xin, LI Ji, WANG Yan, ZHENG Kai-kai, WANG Xiao-fei, ZHI Yao. REASON ANALYSIS AND IMPROVEMENT MEASURES FOR LOW POLLUTANTS CONCENTRATION OF INFLUENT WATER OF URBAN SEWAGE TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 25-30. doi: 10.13205/j.hjgc.202112004
    [14]XIE Bing-kun, JIANG Zu-ming, ZENG Jun, JI Long-jie, LIU Peng, LI Shu-peng, HAN Jin, TIAN Qi-dong. ENERGY EFFICIENCY ANALYSIS OF IN-SITU ELECTROTHERMAL DESORPTION TECHNOLOGY IN POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) CONTAMINATED SITE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 173-178,187. doi: 10.13205/j.hjgc.202108024
    [15]FANG Li, LIU Ji-ye, NIE Lei, HE Li-juan, WANG Hai-lin. VOCs EMISSION CHARACTERISTICS AND OZONE IMPACT ANALYSIS OF TYPICAL AUTOMOBILE REPAIR ENTERPRISES IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 146-150,155. doi: 10.13205/j.hjgc.202010023
    [16]ZHENG Kai-kai, ZHOU Zhen, ZHOU Yuan, WANG Yan, ZHOU Jian-chun, LI Ji. A QUANTITIVE STUDY ON PROPORTION OF GROUNDWATER, RIVER WATER AND RAINWATER IN INFLUENT OF URBAN WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 75-80. doi: 10.13205/j.hjgc.202007012
    [17]LI Jia-ju, ZHENG Xing-can, LI Peng-feng, LI Ji, HE Ling-jun, SUI Ke-jian, LV Zhen, SUN Yong-li, WANG Yan, YANG Min, GAO Chen-chen, GUO Ya-qiong, CHEN Tian-fang, ZHANG Yue, WANG Yi-da. RESEARCH SCHEME AND PROBLEMS IDENTIFICATION OF URBAN SEWAGE TREATMENT PLANTS BASED ON NEW LOCAL STANDARD[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 13-18. doi: 10.13205/j.hjgc.202007002
    [18]ZHANG Xing, QIAN Zhen-qing, ZHANG De-feng, ZHU Tao, YUAN Qian-cheng, YE Ze-fu. RESEARCH PROGRESS OF COOKING FUME EMISSION CHARACTERISTICS AND PURIFICATION TECHNOLOGIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 37-41,20. doi: 10.13205/j.hjgc.202001005
    [19]LI Ji, WANG Yan, LUO Guo-bing, LI Bing-bing. OPERATION EVALUATION OF URBAN SEWAGE TREATMENT PLANTS IMPLEMENTING GRADE I-A STANDARD AND ANALYSIS ON EMPASSIS AND DIFFICULTIES IN UPGRADING THE STANDARD[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 1-12. doi: 10.13205/j.hjgc.202007001
    [20]HUANG Chou, WANG Yan, ZHENG Kai-kai, WANG Shuo, LI Ji. THE INFLUENCING FACTORS AND OPTIMAL OPERATION OF PHOSPHORUS REMOVAL IN URBAN WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 58-65. doi: 10.13205/j.hjgc.202007009
  • Cited by

    Periodical cited type(8)

    1. 王程程,李倩,赵曙光,宋乐山,刘画,张颖,刘思. 含锡锑中间层的铅锑电极的制备及电催化性能研究. 环境工程. 2024(03): 92-98 . 本站查看
    2. 俞佳成,王琴,秦文彬,张宇峰. 三维电极对化工废水中2, 6-二甲基吡啶处理的研究. 现代化工. 2024(08): 180-184 .
    3. 王程程,李磊,宋乐山,张颖,刘思,何超群. 三维电催化氧化法处理含P204废水的试验研究. 工业用水与废水. 2024(04): 31-36 .
    4. 潘海丰,王冰,刘光洲. 三维电极法对废水的处理研究与应用. 辽宁化工. 2023(08): 1185-1188 .
    5. 左煜,王德举,孙晓雪,赵申,王宁. 负载型三维粒子电极在苯胺废水处理中的研究. 能源化工. 2022(04): 77-82 .
    6. 姜帅臣,孙文全,孙永军,周俊. 多金属臭氧催化剂的制备及处理含酚废水的效果. 水处理技术. 2021(11): 42-47 .
    7. 喻海彬,胡文勇,刘静怡,杨哲,沈良辰. 钴金属-有机骨架活化过硫酸钠降解废水中的盐酸土霉素. 环境工程学报. 2020(09): 2506-2514 .
    8. 张娜,朱忻怡,栗崇峻,万佳,孟勇,彭馨. TiO_2-SiO_2/GAC粒子电极的制备及其对氨氮废水去除的探究. 精细化工中间体. 2019(04): 64-69 .

    Other cited types(12)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.9 %FULLTEXT: 20.9 %META: 72.8 %META: 72.8 %PDF: 6.3 %PDF: 6.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 23.2 %其他: 23.2 %China: 0.3 %China: 0.3 %三亚: 0.3 %三亚: 0.3 %上海: 5.6 %上海: 5.6 %保定: 0.3 %保定: 0.3 %兰州: 0.3 %兰州: 0.3 %北京: 2.0 %北京: 2.0 %南京: 1.7 %南京: 1.7 %南昌: 0.3 %南昌: 0.3 %台州: 2.6 %台州: 2.6 %合肥: 0.7 %合肥: 0.7 %商洛: 0.3 %商洛: 0.3 %大连: 0.3 %大连: 0.3 %天津: 2.0 %天津: 2.0 %太原: 0.3 %太原: 0.3 %宁波: 0.7 %宁波: 0.7 %安康: 0.3 %安康: 0.3 %宜春: 0.3 %宜春: 0.3 %宿迁: 0.3 %宿迁: 0.3 %常州: 0.3 %常州: 0.3 %常德: 0.3 %常德: 0.3 %广州: 2.3 %广州: 2.3 %张家口: 0.7 %张家口: 0.7 %徐州: 0.3 %徐州: 0.3 %成都: 3.0 %成都: 3.0 %扬州: 1.3 %扬州: 1.3 %无锡: 0.7 %无锡: 0.7 %昆明: 1.0 %昆明: 1.0 %杭州: 3.3 %杭州: 3.3 %武汉: 1.7 %武汉: 1.7 %沈阳: 1.0 %沈阳: 1.0 %洛杉矶: 0.3 %洛杉矶: 0.3 %淮安: 0.3 %淮安: 0.3 %深圳: 1.0 %深圳: 1.0 %温州: 0.7 %温州: 0.7 %湖州: 0.3 %湖州: 0.3 %漯河: 3.0 %漯河: 3.0 %益阳: 0.7 %益阳: 0.7 %盐城: 0.7 %盐城: 0.7 %福州: 0.3 %福州: 0.3 %聊城: 0.3 %聊城: 0.3 %芒廷维尤: 17.2 %芒廷维尤: 17.2 %芝加哥: 2.0 %芝加哥: 2.0 %西双版纳: 0.3 %西双版纳: 0.3 %西宁: 3.0 %西宁: 3.0 %西安: 0.3 %西安: 0.3 %贵阳: 0.3 %贵阳: 0.3 %赣州: 0.3 %赣州: 0.3 %运城: 1.7 %运城: 1.7 %遵义: 0.3 %遵义: 0.3 %郑州: 0.3 %郑州: 0.3 %重庆: 5.0 %重庆: 5.0 %金华: 0.7 %金华: 0.7 %钦州: 0.7 %钦州: 0.7 %长沙: 2.0 %长沙: 2.0 %鹰潭: 0.3 %鹰潭: 0.3 %其他China三亚上海保定兰州北京南京南昌台州合肥商洛大连天津太原宁波安康宜春宿迁常州常德广州张家口徐州成都扬州无锡昆明杭州武汉沈阳洛杉矶淮安深圳温州湖州漯河益阳盐城福州聊城芒廷维尤芝加哥西双版纳西宁西安贵阳赣州运城遵义郑州重庆金华钦州长沙鹰潭

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (40) PDF downloads(0) Cited by(20)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return