Citation: | FU Jiahui, GUO Jie, LIU Airong, ZHOU Tao, ZHAO Youcai. DEVELOPMENT AND BARRIER PERFORMANCE OF A POLYVINYLPYRROLIDONE/ HYDROXYPROPYL METHYLCELLULOSE/NANOCELLULOSE TERNARY ODOR GAS BARRIER SPRAY FILM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 116-125. doi: 10.13205/j.hjgc.202412015 |
[1] |
CAI B, WANG J, LONG Y, et al. Evaluating the impact of odors from the 1955 landfills in China using a bottom-up approach[J]. Journal of Environmental Management, 2015, 164: 206-214.
|
[2] |
赵岩, 陆文静, 王洪涛, 等. 城市固体废物处理处置设施恶臭污染评估指标体系研究[J]. 中国环境科学, 2014, 34(7): 1804-1810.
|
[3] |
纪华. 垃圾填埋场恶臭气体产气机制及其动态变化研究[D]. 北京:中国农业大学, 2004.
|
[4] |
CHIRIAC R, de ARAUJOS M J, CARRE J, et al. Study of the VOC emissions from a municipal solid waste storage pilot-scale cell: comparison with biogases from municipal waste landfill site[J]. Waste Management, 2011, 31(11): 2294-2301.
|
[5] |
LOU Z Y, WANG M C, ZHAO Y C, et al. The contribution of biowaste disposal to odor emission from landfills[J]. Journal of the Air & Waste Management Association, 2015, 65(4): 479-484.
|
[6] |
史炜, 王军民, 曹江林. 垃圾填埋场臭气理论研究进展[J]. 山东化工, 2018, 47(19): 189, 195.
|
[7] |
CERDA A, ARTOLA A, FONT X, et al. Composting of food wastes: status and challenges[J]. Bioresource Technology, 2018, 248: 57-67.
|
[8] |
KASHFI K, OLSON K R. Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras[J]. Biochemical Pharmacology, 2013, 85(5): 689-703.
|
[9] |
NYAMWEYA N, HOAG S W. Assessment of polymer-polymer interactions in blends of HPMC and film forming polymers by modulated temperature differential scanning calorimetry[J]. Pharmaceutical Research, 2000, 17(5): 625-631.
|
[10] |
KARAVAS E, GEORGARAKIS E, BIKIARIS D. Adjusting drug release by using miscible polymer blends as effective drug carriers[J]. Journal of Thermal Analysis and Calorimetry, 2006, 84(1): 125-133.
|
[11] |
MORKHADE D M. Comparative impact of different binder addition methods, binders and diluents on resulting granule and tablet attributes via high shear wet granulation[J]. Powder Technology, 2017, 320: 114-124.
|
[12] |
HIREMATH A C, SHERIGARA B S, PRASHANTHA K, et al. Studies on the miscibility of hydroxy propyl methyl cellulose and poly(vinyl pyrollidone) blends[J]. Indian Journal Chemical Technology, 2002, 9(4): 312-315.
|
[13] |
DONG B X, LIM L, HADINOTO K. Enhancing the physical stability and supersaturation generation of amorphous drug-polyelectrolyte nanoparticle complex via incorporation of crystallization inhibitor at the nanoparticle formation step: a case of HPMC versus PVP[J]. European Journal of Pharmaceutical Sciences, 2019, 138:105035.
|
[14] |
PARK H B, KAMCEV J, ROBESON L M, et al. Maximizing the right stuff: the trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530.
|
[15] |
郭学彬, 赵珊, 常江, 等. 膜接触—吸收法去除市政污水厂恶臭气体研究[J]. 环境科学与管理, 2023, 48(6): 94-99.
|
[16] |
LU H T, KANEHASHI S, SCHOLES C A, et al. The impact of ethylene glycol and hydrogen sulphide on the performance of cellulose triacetate membranes in natural gas sweetening[J]. Journal of Membrane Science, 2017, 539: 432-440.
|
[17] |
郭婕, 刘静, 邓子龙, 等. 靶向去除恶臭气体硫化氢和氨气的喷膜制备及性能研究[J]. 山东化工, 2021, 50(6): 26-29.
|
[18] |
KOCZKUR K M, MOURDIKOUDIS S, POLAVARAPU L, et al. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis[J]. Dalton Transactions, 2015, 44(41): 17883-17905.
|
[19] |
GRAF C, DEMBSKI S, HOFMANN A, et al. A general method for the controlled embedding of nanoparticles in silica colloids[J]. Langmuir, 2006, 22(13): 5604-5610.
|
[20] |
WU X K, ZHAO Y R, YANG C Q, et al. PVP-assisted synthesis of shape-controlled CuFeS2 nanocrystals for Li-ion batteries[J]. Journal of Materials Science, 2015, 50(12): 4250-4257.
|
[21] |
XU M L, LI D D, SUN K, et al. Interfacial microenvironment modulation boosting electron transfer between metal nanoparticles and MOFs for enhanced photocatalysis[J]. Angewandte Chemie International Edition, 2021, 60(30): 16372-16376.
|
[22] |
CHANG C Y, ZHANG L N. Cellulose-based hydrogels: present status and application prospects[J]. Carbohydrate Polymers, 2011, 84(1): 40-53.
|
[23] |
刘啸武. 羟丙基甲基纤维素生产技术和发展前景[J]. 江汉石油职工大学学报, 2004(6): 58-60.
|
[24] |
PRAKASH Y, SOMASHEKARAPPA H, PARAMESWARA P, et al. Characterization of HPMC/PVP polymer blend films using WAXS technique[C]//Solid State Physics, PTS 1 and 2, 2012: 565.
|
[25] |
李伟, 王锐, 刘守新. 纳米纤维素的制备[J]. 化学进展, 2010, 22(10): 2060-2070.
|
[26] |
XUE Y, MOU Z H, XIAO H N. Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications[J]. Nanoscale, 2017, 9(39): 14758-14781.
|
[27] |
卿彦, 蔡智勇, 吴义强, 等. 纤维素纳米纤丝研究进展[J]. 林业科学, 2012, 48(7): 145-152.
|
[28] |
YIN R, YANG S Y, LI Q M,et al. Flexible conductive Ag nanowire/cellulose nanofibril hybrid nanopaper for strain and temperature sensing applications[J]. Science Bulletin, 2020, 65(11): 899-908.
|
[29] |
赵冬梅, 初小宇, 魏丽娜, 等. 纳米纤维素在食品包装材料中的应用研究进展[J]. 高分子通报, 2021(11): 11-20.
|
[30] |
陈秋宏. 纤维素纳米晶稳定高内相乳液及应用[D]. 广州:华南理工大学, 2018.
|
[31] |
李亚瑜. 纤维素纳米晶/水性聚氨酯薄膜的构建、性能及机理研究[D]. 北京:北京林业大学, 2020.
|
[32] |
吴开丽, 韩陈晓, 于娟娟. 纤维素纳米晶的制备及应用研究进展[J]. 造纸科学与技术, 2020, 39(4): 9-13.
|
[33] |
张思航, 付润芳, 董立琴, 等 纳米纤维素的制备及其复合材料的应用研究进展[J]. 中国造纸, 2017, 36(1): 67-74.
|
[34] |
李勍, 陈文帅, 于海鹏, 等. 纤维素纳米纤维增强聚合物复合材料研究进展[J]. 林业科学, 2013, 49(8): 126-131.
|
[35] |
CHOI H Y, BAE J H, HASEGAWA Y, et al. Thiol-functionalized cellulose nanofiber membranes for the effective adsorption of heavy metal ions in water[J]. Carbohydrate Polymers, 2020, 234:115881.
|
[36] |
GUAN Q F, YANG H B, HAN Z M, et al. Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient[J]. Science Advances, 2020, 6(18):eaaz1114.
|
[37] |
WANG D, PENG H Y, YU B, et al. Biomimetic structural cellulose nanofiber aerogels with exceptional mechanical, flame-retardant and thermal-insulating properties[J]. Chemical Engineering Journal, 2020, 389: 124449.
|
[38] |
EYLEY S, Thielemans W. Surface modification of cellulose nanocrystals[J]. NANOSCALE, 2014, 6(14): 7764-7779.
|
[39] |
KARGARZADEH H, MARIANO M, GOPAKUMAR D, et al. Advances in cellulose nanomaterials[J]. Cellulose, 2018, 25(4): 2151-2189.
|
[40] |
MOHAMMED N, LIAN H, ISLAM M S, et al. Selective adsorption and separation of organic dyes using functionalized cellulose nanocrystals[J]. Chemical Engineering Journal, 2021, 417: 129237.
|
[41] |
YANG X, CRANSTON E D. Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties[J]. Chemistry of Materials, 2014, 26(20): 6016-6025.
|
[42] |
田凤蓉, 张彬彬, 杨志林, 等. 酸性洗涤塔-生物滤塔-生物曝气池组合工艺处理恶臭气体NH3和H2S[J]. 环境工程学报, 2014, 8(9): 3905-3911.
|
[43] |
MOREIRA R, CHENLO F, TORRES M D, et al. Drying kinetics of biofilms obtained from chestnut starch and carrageenan with and without glycerol[J]. Drying Technology, 2011, 29(9): 1058-1065.
|
[44] |
LECETA I, GUERRERO P, DE LA CABA K. Functional properties of chitosan-based films[J]. Carbohydrate Polymers, 2013, 93(1): 339-346.
|
[45] |
SUYATMA N E, TIGHZERT L, COPINET A, et al. Effects of hydrophilic plasticizers on mechanical, thermal, and surface properties of chitosan films[J]. Journal of Agricultural and Food Chemistry, 2005, 53(10): 3950-3957.
|
[46] |
OSÉS J, FERNÁNDEZ-PAN I, MENDOZA M, et al. Stability of the mechanical properties of edible films based on whey protein isolate during storage at different relative humidity[J]. Food Hydrocolloids, 2009, 23(1): 125-131.
|
[47] |
吴毅, 金少鸿. 药用辅料吐温80的药理、药动学及分析方法研究进展[J]. 中国药事, 2008(8): 717-720.
|
[48] |
王伟江. 天然活性单萜——柠檬烯的研究进展[J]. 中国食品添加剂, 2005(1): 33-37.
|
[49] |
CIRIMINNA R, LOMELI-RODRIGUEZ M, CARA P D, et al. Limonene: a versatile chemical of the bioeconomy[J]. Chemical Communications, 2014, 50(97): 15288-15296.
|