Citation: | ZHAO Jingbo, WANG Rui, HAN Bo, DENG Tian, MA Simeng, HAN Bin. EMISSION CHARACTERISTICS OF GASEOUS POLLUTANTS AND PARTICULATE MATTER FROM A SMALL TURBOFAN ENGINE UNDER MULTIPLE OPERATING CONDITIONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 145-154. doi: 10.13205/j.hjgc.202412018 |
[1] |
袁远, 吴琳, 邹超, 等. 天津机场飞机污染排放及其特征研究[J]. 环境工程, 2018, 36(9): 81-86
,58.
|
[2] |
YU J L, SHAO C F, XUE C Y, et al. China’s aircraft-related CO2 emissions: decomposition analysis, decoupling status, and future trends[J]. Energy Policy, 2020, 138: 111215.
|
[3] |
韩博, 石依琳, 纪翔, 等. 典型通航飞机PM与TVOC排放特征及排放因子[J]. 中国环境科学, 2023, 43 (4): 1550-1557.
|
[4] |
DURDINA L, BREM B T, SCHÖNENBERGER D, et al. Nonvolatile particulate matter emissions of a business jet measured at ground level and estimated for cruising altitudes[J]. Environmental Science & Technology, 2019, 53(21): 12865-12872.
|
[5] |
HU S, FRUIN S, KOZAWA K, et al. Aircraft emission impacts in a neighborhood adjacent to a general aviation airport in Southern California[J]. Environmental Science & Technology, 2009, 43(21): 8039-8045.
|
[6] |
CHEN L F, LIANG Z R, LIU H Y, et al. Sensitivity analysis of fuel types and operational parameters on the particulate matter emissions from an aviation piston engine burning heavy fuels[J]. Fuel, 2017, 202: 520-528.
|
[7] |
盛久江, 王飞, 李霞,等. 涡桨飞机 VOCs 排放特征的质子迁移反应飞行时间质谱 (PTR-TOF-MS)分析[J]. 环境科学学报, 2021, 41(5): 1784-1791.
|
[8] |
YU Z H, LISCINSKY D S, FORTNER E C, et al. Evaluation of PM emissions from two in-service gas turbine general aviation aircraft engines[J]. Atmospheric Environment, 2017, 160: 9-18.
|
[9] |
TRAN S, BROWN A, OLFERT J S. Comparison of particle number emissions from in-flight aircraft Fueled with Jet A1, JP-5 and an alcohol-to-jet fuel blend[J]. Energy & Fuels, 2020, 34(6): 7218-7222.
|
[10] |
BENAVIDES A, BENJUMEA P, CORTÉS F B, et al. Chemical composition and low-temperature fluidity properties of jet fuels[J]. Processes, 2021, 9(7): 1184.
|
[11] |
International Civil Aviation Organization (ICAO). Annex 16-Environmental Protection-Volume Ⅱ-Aircraft Engine Emissions[J]. Montr é al:International Civil Aviation Organization,2017.
|
[12] |
张子祎, 刘保双, 孟赫, 等. 青岛市港口区域PM2.5污染特征及来源解析研究[J]. 环境科学学报, 2022, 42(11): 293-307.
|
[13] |
BASHTANI J, SEDDIGHI S, BAHRABADI-Jovein I. Control of nitrogen oxide formation in power generation using modified reaction kinetics and mixing[J]. Energy, 2018, 145: 567-581.
|
[14] |
TANBAY T, UCA M B, DURMAYAZ A. Assessment of NO<em>x emissions of the Scimitar engine at Mach 5 based on a thermodynamic cycle analysis[J]. International Journal of Hydrogen Energy, 2020, 45(5): 3632-3640.
|
[15] |
CERINSKI D, VUJANOVIC M, PETRANOVIC Z, et al. Numerical analysis of fuel injection configuration on nitrogen oxides formation in a jet engine combustion chamber[J]. Energy Conversion and Management, 2020, 220: 112862.
|
[16] |
International Civil Aviation Organization (ICAO). ICAO aircraft engine emissions databank[EB/OL].2021,https://www.easa.europa.eu/domains/environment/icao-aircraft-engine-emissions-databank.
|
[17] |
IODICE P, SENATORE A, LANGELLA G, et al. Effect of ethanol-gasoline blends on CO and HC emissions in last generation SI engines within the cold-start transient: an experimental investigation[J]. Applied Energy, 2016, 179: 182-190.
|
[18] |
KINSEY J S, DONG Y J, WILLIAMS DC, et al. Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1-3[J]. Atmospheric Environment, 2010, 44(17): 2147-2156.
|
[19] |
DELHAYE D, OUF F X, FERRY D, et al. The MERMOSE project: characterization of particulate matter emissions of a commercial aircraft engine[J]. Journal of Aerosol Science, 2017, 105: 48-63.
|
[20] |
LIANG Z R, YU Z H, ZHANG C, et al. IVOC/SVOC and size distribution characteristics of particulate matter emissions from a modern aero-engine combustor in different operational modes[J]. Fuel, 2022, 314: 122781.
|
[21] |
KINSEY J S, TIMKO M T, HERNDON S C, et al. Determination of the emissions from an aircraft auxiliary power unit (APU) during the Alternative Aviation Fuel Experiment (AAFEX)[J]. Journal of the Air & Waste Management Association, 2012, 62(4): 420-430.
|
[22] |
SCHRIPP T, ANDERSON B E, BAUDER U, et al. Aircraft engine particulate matter emissions from sustainable aviation fuels: results from ground-based measurements during the NASA/DLR campaign ECLIF2/ND-MAX[J]. Fuel, 2022, 325: 124764.
|
[23] |
DURDINA L, BREM B T, SETYAN A, et al. Assessment of particle pollution from jetliners: from smoke visibility to nanoparticle counting[J]. Environmental Science & Technology, 2017, 51(6): 3534-3541.
|
[24] |
CORBIN J C, MENSAH A A, PIEBER S M, et al. Trace metals in soot and PM2.5 from heavy-fuel-oil combustion in a marine engine[J]. Environmental Science & Technology, 2018, 52(11): 6714-6722.
|
[25] |
TURGUT E T, AÇIKEL G, GAGA E O, et al. A comprehensive characterization of particulate matter, trace elements, and gaseous emissions of piston-engine aircraft[J]. Environmental Science & Technology, 2020, 54(13): 7818-7835.
|
[26] |
PIERCE D, HAYNES A, HUGHES J, et al. High temperature materials for heavy duty diesel engines: historical and future trends[J]. Progress in Materials Science, 2019, 103: 109-179.
|
[27] |
KINSEY J S, HAYS M D, DONG Y, et al. Chemical characterization of the fine particle emissions from commercial aircraft engines during the aircraft particle emissions experiment (APEX) 1 to 3[J]. Environmental Science & Technology, 2011, 45(8): 3415-3421.
|
[28] |
DUAN J C, TAN J H, WANG S L, et al. Roadside, urban, and rural comparison of size distribution characteristics of PAHs and carbonaceous components of Beijing, China[J]. Journal of Atmospheric Chemistry, 2012, 69(4): 337-349.
|
[29] |
沈嵩, 刘蕾, 温维, 等. 北京及周边地区夏季PM2.5中含碳组分污染特征与来源解析[J]. 环境工程, 2022, 40(2): 71-80.
|
[30] |
WATSON J G, CHOW J C, LOWENTHAL D H, et al. Differences in the carbon composition of source profiles for diesel-and gasoline-powered vehicles[J]. 1994, 28(15): 2493-2505.
|
[31] |
王成, 曹靖原, 段小琳, 等. 山西省四城市冬季PM2.5中碳质组分特征及来源分析[J]. 环境工程, 2021, 39(6): 114-121.
|
[32] |
JI D S, ZHANG J K, HE J, et al. Characteristics of atmospheric organic and elemental carbon aerosols in urban Beijing, China[J]. Atmospheric Environment, 2016, 125: 293-306.
|
[33] |
YAN C Q, ZHENG M, SHEN G F, et al. Characterization of carbon fractions in carbonaceous aerosols from typical fossil fuel combustion sources[J]. Fuel, 2019, 254: 115620.
|
[34] |
HAN Y, CHEN Y J, AHMAD S, et al. High time- and size-resolved measurements of PM and chemical composition from coal combustion: implications for the EC formation process[J]. Environmental Science & Technology, 2018, 52(11): 6676-6685.
|
[35] |
韩博, 姚婷玮, 王立婕, 等. 天津机场区域大气NO2及O3影响因子研究[J]. 中国环境科学, 2020, 40(6): 2398-2408.
|
[36] |
BIAN H S, CHIN M, HAUGLUSTAINE D A, et al. Investigation of global particulate nitrate from the AeroCom phase Ⅲ experiment[J]. Atmospheric Chemistry and Physics, 2017, 17(21): 12911-12940.
|