Citation: | YUAN Shuai, LI Yan, ZHAO Yuxiao, XU Haipeng, CHEN Lei, JIN Fuqiang, HUA Dongliang. INHIBITORY INSTABILITY ANALYSIS OF ANAEROBIC DIGESTION OF KITCHEN WASTE AND MICROECOLOGICAL ANALYSIS OF DIGESTION EFFICIENCY IMPROVEMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 184-192. doi: 10.13205/j.hjgc.202412022 |
[1] |
王炯科, 汤晓玉, 王文国, 等. 餐厨垃圾干式厌氧发酵研究进展[J]. 中国沼气, 2021, 39(3): 35-41.
|
[2] |
李琳. 污泥与餐厨垃圾联合厌氧技术的研究及应用[J]. 中国环保产业, 2019(2): 50-54.
|
[3] |
NIKITINA A A, ERMOSHIN A A, ZHURAVLEVA E A, et al. Application of polyacrylamide flocculant for stabilization of anaerobic digestion under conditions of excessive accumulation of volatile fatty acids[J]. Applied Sciences, 2020, 11(1): 100.
|
[4] |
李丹妮. 猪场粪污厌氧干发酵酸氨抑制规律研究[D]. 北京:中国农业科学院,2021.
|
[5] |
刘晓玲. 城市污泥厌氧发酵产酸条件优化及其机理研究[D]. 无锡:江南大学, 2009.
|
[6] |
JIANG Y, DENNEHY C, LAWLOR P G, et al. Inhibition of volatile fatty acids on methane production kinetics during dry co-digestion of food waste and pig manure[J]. Waste Management, 2018, 79: 302-311.
|
[7] |
JIANG Y, XIE S, DENNEHY C, et al. Inactivation of pathogens in anaerobic digestion systems for converting biowastes to bioenergy: a review[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109654.
|
[8] |
谢一涵, 方茜, 刘煜, 等. 剩余污泥在微氧条件下利用VFAs合成PHAs的工况优化[J]. 环境工程学报, 2020, 14(4): 1052-1058.
|
[9] |
李翠茹, 彭买姣, 谭周进. 肠道菌群相关短链脂肪酸的研究进展[J]. 世界华人消化杂志, 2022, 30(13): 562-570.
|
[10] |
唐涛涛, 李江, 杨钊, 等. 污泥厌氧消化功能微生物群落结构的研究进展[J]. 化工进展, 2020, 39(1): 320-328.
|
[11] |
WANG G J, LI Q, YUWEN C S, et al. Biochar triggers methanogenesis recovery of a severely acidified anaerobic digestion system via hydrogen-based syntrophic pathway inhibition[J]. International Journal of Hydrogen Energy, 2021, 46(15): 9666-9677.
|
[12] |
RAJAGOPAL R, MASSÉ DI, SINGH G. A critical review on inhibition of anaerobic digestion process by excess ammonia[J]. Bioresource Technology, 2013, 143: 632-641.
|
[13] |
FOTIDIS I A, KARAKASHEV D, KOTSOPOULOS T A, et al. Effect of ammonium and acetate on methanogenic pathway and methanogenic community composition[J]. FEMS Microbiology Ecology, 2013, 83(1): 38-48.
|
[14] |
BUHLMANN C H, MICKAN B S, JENKINS S N, et al. Ammonia stress on a resilient mesophilic anaerobic inoculum: methane production, microbial community, and putative metabolic pathways[J]. Bioresource Technology, 2019, 275: 70-77.
|
[15] |
孟伟, 查金, 张思梦, 等. 餐厨垃圾厌氧消化过程氨氮抑制及缓解办法综述[J]. 环境工程, 2019, 37(12): 177-182.
|
[16] |
KOSTER I, LETTINGA G. The influence of ammonium-nitrogen on the specific activity of pelletized methanogenic sludge[J]. Agricultural Wastes, 1984, 9(3): 205-216.
|
[17] |
FOTIDIS I, KARAKASHEV D, ANGELIDAKI I. The dominant acetate degradation pathway/methanogenic composition in full-scale anaerobic digesters operating under different ammonia levels[J]. International Journal of Environmental Science and Technology, 2014, 11: 2087-2094.
|
[18] |
SCHN&3220;RER A, NORDBERG Å. Ammonia, a selective agent for methane production by syntrophic acetate oxidation at mesophilic temperature[J]. Water Science and Technology, 2008, 57(5): 735-740.
|
[19] |
刘新媛. 污泥和餐厨废物两相双温发酵产氢产甲烷研究[D].天津:天津大学,2016.
|
[20] |
CHU C F, EBIE Y, XU K Q, et al. Characterization of microbial community in the two-stage process for hydrogen and methane production from food waste[J]. International Journal of Hydrogen Energy, 2010, 35(15): 8253-8261.
|
[21] |
刘红. 餐厨垃圾两相带压厌氧消化研究[D].北京:中国石油大学,2018.
|
[22] |
YAN B H, SELVAM A, WONG J W. Innovative method for increased methane recovery from two-phase anaerobic digestion of food waste through reutilization of acidogenic off-gas in methanogenic reactor[J]. Bioresource Technology, 2016, 217: 3-9.
|
[23] |
王优, 陈勇美, 张晓叶, 等. 淋滤-UASB工艺处理餐厨垃圾产气应用中试研究[J]. 江苏理工学院学报, 2015, 21(6): 50-54
,60.
|
[24] |
ZHANG L, LOH K C, ZHANG J, et al. Three-stage anaerobic co-digestion of food waste and waste activated sludge: identifying bacterial and methanogenic archaeal communities and their correlations with performance parameters[J]. Bioresource Technology, 2019, 285: 121333.
|
[25] |
AHAMED A, CHEN C L, RAJAGOPAL R, et al. Multi-phased anaerobic baffled reactor treating food waste[J]. Bioresource Technology, 2015, 182: 239-244.
|
[26] |
ORTNER M, RAMEDER M, RACHBAUER L, et al. Bioavailability of essential trace elements and their impact on anaerobic digestion of slaughterhouse waste[J]. Biochemical Engineering Journal, 2015, 99: 107-113.
|
[27] |
张万钦. 微量元素添加对餐厨垃圾和鸡粪厌氧消化性能的调控研究[D].北京:中国农业大学,2016.
|
[28] |
FACCHIN V, CAVINATO C, FATONE F, et al. Effect of trace element supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials: the influence of inoculum origin[J]. Biochemical Engineering Journal, 2013, 70: 71-77.
|
[29] |
黄霖琳, 李润东, 张万里. 餐厨垃圾厌氧系统失衡过程及金属微量元素强化效应研究[C]//2021年全国有机固废处理与资源化利用高峰论坛论文集, 2021: 340-348.
|
[30] |
张万里. 餐厨垃圾厌氧消化特性及调控策略研究[D].大连:大连理工大学,2016.
|
[31] |
孙彩玉, 乔艳云, 赵海玉, 等. Co、Ni微量元素对厨余垃圾厌氧发酵性能的影响[J]. 黑龙江科技大学学报, 2019,29(2): 210-215.
|
[32] |
BANKS C J, ZHANG Y, JIANG Y, et al. Trace element requirements for stable food waste digestion at elevated ammonia concentrations[J]. Bioresource Technology, 2012, 104: 127-135.
|
[33] |
张静. 餐厨垃圾厌氧消化产甲烷因素优化以及相应微生物群落结构解析[D].武汉:武汉大学,2017.
|
[34] |
张照韩, 李增, 孙沐晨, 等. 微生物胞外电子传递过程强化机制及污染物高效转化[J]. 环境科学学报, 2020, 40(10): 3484-3493.
|
[35] |
KABUTEY F T, ZHAO Q L, WEI L L, et al. An overview of plant microbial fuel cells (PMFCs): configurations and applications[J]. Renewable and Sustainable Energy Reviews, 2019, 110: 402-414.
|
[36] |
WANG R M, LI C X, LV N, et al. Deeper insights into effect of activated carbon and nano-zero-valent iron addition on acidogenesis and whole anaerobic digestion[J]. Bioresource Technology, 2021, 324: 124671.
|
[37] |
ROTARU A E, SHRESTHA P M, LIU F, et al. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri[J]. Applied and Environmental Microbiology, 2014, 80(15): 4599-4605.
|
[38] |
YUAN T G, SHI X Y, SUN R, et al. Simultaneous addition of biochar and zero-valent iron to improve food waste anaerobic digestion[J]. Journal of Cleaner Production, 2021, 278: 123627.
|
[39] |
LI D Y, SUN M Y, XU J F, et al. Effect of biochar derived from biogas residue on methane production during dry anaerobic fermentation of kitchen waste[J]. Waste Management, 2022, 149: 70-78.
|
[40] |
ZHAO T, CHEN Y D, YU Q, et al. Enhancement of performance and stability of anaerobic co-digestion of waste activated sludge and kitchen waste by using bentonite[J]. PlOS One, 2019, 14(7): e0218856.
|
[41] |
HU Y, LIU S, WANG X, et al. Enhanced anaerobic digestion of kitchen waste at different solids content by alkali pretreatment and bentonite addition: methane production enhancement and microbial mechanism[J]. Bioresource Technology, 2023, 369: 128369.
|
[42] |
SU L H, SHI X L, GUO G Z, et al. Stabilization of sewage sludge in the presence of nanoscale zero-valent iron (nZVI): abatement of odor and improvement of biogas production[J]. Journal of Material Cycles and Waste Management, 2013, 15(4): 461-468.
|
[43] |
王攀, 杜晓璐, 陈锡腾, 等. Fe0对污泥接种餐厨垃圾厌氧发酵及抗生素抗性基因的影响[J]. 环境工程, 2019, 37(7): 178-182.
|
[44] |
YAN W L, HERZING A A, KIELY C J, et al. Nanoscale zero-valent iron (nZVI): aspects of the core-shell structure and reactions with inorganic species in water[J]. Manufactured Nanomaterials in Subsurface Systems, 2010, 118(3/4): 96-104.
|
[45] |
ZHAO M X, TANG J Y, LIU Z Y, et al. Coupling effect of nanoscale zero-valent iron and sodium lauroyl sarcosinate on the biogas biological upgrading from kitchen wastewater by anaerobic digestion[J]. Journal of Environmental Chemical Engineering, 2023, 11(1): 109146.
|
[46] |
ZHANG J, ZHANG R T, WANG H Y, et al. Direct interspecies electron transfer stimulated by granular activated carbon enhances anaerobic methanation efficiency from typical kitchen waste lipid-rapeseed oil[J]. Science of the Total Environment, 2020, 704: 135282.
|
[47] |
WANG P, WANG X Z, CHEN X T, et al. Effects of bentonite on antibiotic resistance genes in biogas slurry and residue from thermophilic and mesophilic anaerobic digestion of food waste[J]. Bioresource Technology, 2021, 336: 125322.
|
[48] |
MURATÇOBANOǦLU H, GÖKÇEK ÖB, MERT R A, et al. Simultaneous synergistic effects of graphite addition and co-digestion of food waste and cow manure: biogas production and microbial community[J]. Bioresource Technology, 2020, 309: 123365.
|
[49] |
朱铁群, 李凯慧, 张杰. 活性污泥驯化的微生物生态学原理[J]. 微生物学通报, 2008,35(6): 939-943.
|
[50] |
聂家民. 鸡粪促进餐厨垃圾高负荷厌氧发酵特性研究[D].天津:天津农学院,2020.
|
[51] |
CHO S K, IM W T, KIM D H, et al. Dry anaerobic digestion of food waste under mesophilic conditions: performance and methanogenic community analysis[J]. Bioresource Technology, 2013, 131: 210-217.
|
[52] |
陆玉, 钟慧, 丑三涛, 等. 乙酸驯化对厌氧污泥微生物群落结构及发酵特性的影响[J]. 环境科学学报, 2018,5(38): 1835-1842.
|
[53] |
高一鸣. 丙酸产甲烷菌系驯化及对餐厨垃圾厌氧发酵强化作用研究[D].哈尔滨:东北农业大学,2018.
|
[54] |
骆雪. 餐厨垃圾厌氧消化耐氨产甲烷菌的培养与提纯研究[D].南京:东南大学,2022.
|
[55] |
吴桂菊, 邸玉翠, 申嫄, 等. 厌氧消化污泥的耐酸驯化培养[J]. 三峡环境与生态, 2013, 35(2): 45-48.
|
[56] |
BERTIN L, BETTINI C, ZANAROLI G, et al. Acclimation of an anaerobic consortium capable of effective biomethanization of mechanically-sorted organic fraction of municipal solid waste through a semi-continuous enrichment procedure[J]. Journal of Chemical Technology & Biotechnology, 2012, 87(9): 1312-1319.
|
[57] |
魏桃员, 温海东, 成家杨. 零价铁驯化污泥对餐厨垃圾厌氧消化产甲烷的影响[J]. 湖北农业科学, 2016, 55(14): 3618-3621.
|