Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YUAN Shuai, LI Yan, ZHAO Yuxiao, XU Haipeng, CHEN Lei, JIN Fuqiang, HUA Dongliang. INHIBITORY INSTABILITY ANALYSIS OF ANAEROBIC DIGESTION OF KITCHEN WASTE AND MICROECOLOGICAL ANALYSIS OF DIGESTION EFFICIENCY IMPROVEMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 184-192. doi: 10.13205/j.hjgc.202412022
Citation: YUAN Shuai, LI Yan, ZHAO Yuxiao, XU Haipeng, CHEN Lei, JIN Fuqiang, HUA Dongliang. INHIBITORY INSTABILITY ANALYSIS OF ANAEROBIC DIGESTION OF KITCHEN WASTE AND MICROECOLOGICAL ANALYSIS OF DIGESTION EFFICIENCY IMPROVEMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 184-192. doi: 10.13205/j.hjgc.202412022

INHIBITORY INSTABILITY ANALYSIS OF ANAEROBIC DIGESTION OF KITCHEN WASTE AND MICROECOLOGICAL ANALYSIS OF DIGESTION EFFICIENCY IMPROVEMENT

doi: 10.13205/j.hjgc.202412022
  • Received Date: 2023-12-01
    Available Online: 2025-01-18
  • As the main organic solid waste component in the urban areas, kitchen waste is produced in large quantities and causes serious pollution. Anaerobic digestion has become one of the mainstream processing technologies, which can reduce the amount of food waste and recover energy simultaneously. This paper discussed the technical risk of metabolite accumulation in the anaerobic digestion of kitchen waste, and the mechanism of inhibitory instability from a microbial perspective was analyzed. Furthermore, bioaugmentation strategies such as microecological regulation, additive supplementation, and microbial domestication are introduced to guarantee efficient biogas production and stable operation, which can provide a reference for large-scale treatment of kitchen waste.
  • [1]
    王炯科, 汤晓玉, 王文国, 等. 餐厨垃圾干式厌氧发酵研究进展[J]. 中国沼气, 2021, 39(3): 35-41.
    [2]
    李琳. 污泥与餐厨垃圾联合厌氧技术的研究及应用[J]. 中国环保产业, 2019(2): 50-54.
    [3]
    NIKITINA A A, ERMOSHIN A A, ZHURAVLEVA E A, et al. Application of polyacrylamide flocculant for stabilization of anaerobic digestion under conditions of excessive accumulation of volatile fatty acids[J]. Applied Sciences, 2020, 11(1): 100.
    [4]
    李丹妮. 猪场粪污厌氧干发酵酸氨抑制规律研究[D]. 北京:中国农业科学院,2021.
    [5]
    刘晓玲. 城市污泥厌氧发酵产酸条件优化及其机理研究[D]. 无锡:江南大学, 2009.
    [6]
    JIANG Y, DENNEHY C, LAWLOR P G, et al. Inhibition of volatile fatty acids on methane production kinetics during dry co-digestion of food waste and pig manure[J]. Waste Management, 2018, 79: 302-311.
    [7]
    JIANG Y, XIE S, DENNEHY C, et al. Inactivation of pathogens in anaerobic digestion systems for converting biowastes to bioenergy: a review[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109654.
    [8]
    谢一涵, 方茜, 刘煜, 等. 剩余污泥在微氧条件下利用VFAs合成PHAs的工况优化[J]. 环境工程学报, 2020, 14(4): 1052-1058.
    [9]
    李翠茹, 彭买姣, 谭周进. 肠道菌群相关短链脂肪酸的研究进展[J]. 世界华人消化杂志, 2022, 30(13): 562-570.
    [10]
    唐涛涛, 李江, 杨钊, 等. 污泥厌氧消化功能微生物群落结构的研究进展[J]. 化工进展, 2020, 39(1): 320-328.
    [11]
    WANG G J, LI Q, YUWEN C S, et al. Biochar triggers methanogenesis recovery of a severely acidified anaerobic digestion system via hydrogen-based syntrophic pathway inhibition[J]. International Journal of Hydrogen Energy, 2021, 46(15): 9666-9677.
    [12]
    RAJAGOPAL R, MASSÉ DI, SINGH G. A critical review on inhibition of anaerobic digestion process by excess ammonia[J]. Bioresource Technology, 2013, 143: 632-641.
    [13]
    FOTIDIS I A, KARAKASHEV D, KOTSOPOULOS T A, et al. Effect of ammonium and acetate on methanogenic pathway and methanogenic community composition[J]. FEMS Microbiology Ecology, 2013, 83(1): 38-48.
    [14]
    BUHLMANN C H, MICKAN B S, JENKINS S N, et al. Ammonia stress on a resilient mesophilic anaerobic inoculum: methane production, microbial community, and putative metabolic pathways[J]. Bioresource Technology, 2019, 275: 70-77.
    [15]
    孟伟, 查金, 张思梦, 等. 餐厨垃圾厌氧消化过程氨氮抑制及缓解办法综述[J]. 环境工程, 2019, 37(12): 177-182.
    [16]
    KOSTER I, LETTINGA G. The influence of ammonium-nitrogen on the specific activity of pelletized methanogenic sludge[J]. Agricultural Wastes, 1984, 9(3): 205-216.
    [17]
    FOTIDIS I, KARAKASHEV D, ANGELIDAKI I. The dominant acetate degradation pathway/methanogenic composition in full-scale anaerobic digesters operating under different ammonia levels[J]. International Journal of Environmental Science and Technology, 2014, 11: 2087-2094.
    [18]
    SCHN&3220;RER A, NORDBERG Å. Ammonia, a selective agent for methane production by syntrophic acetate oxidation at mesophilic temperature[J]. Water Science and Technology, 2008, 57(5): 735-740.
    [19]
    刘新媛. 污泥和餐厨废物两相双温发酵产氢产甲烷研究[D].天津:天津大学,2016.
    [20]
    CHU C F, EBIE Y, XU K Q, et al. Characterization of microbial community in the two-stage process for hydrogen and methane production from food waste[J]. International Journal of Hydrogen Energy, 2010, 35(15): 8253-8261.
    [21]
    刘红. 餐厨垃圾两相带压厌氧消化研究[D].北京:中国石油大学,2018.
    [22]
    YAN B H, SELVAM A, WONG J W. Innovative method for increased methane recovery from two-phase anaerobic digestion of food waste through reutilization of acidogenic off-gas in methanogenic reactor[J]. Bioresource Technology, 2016, 217: 3-9.
    [23]
    王优, 陈勇美, 张晓叶, 等. 淋滤-UASB工艺处理餐厨垃圾产气应用中试研究[J]. 江苏理工学院学报, 2015, 21(6): 50-54

    ,60.
    [24]
    ZHANG L, LOH K C, ZHANG J, et al. Three-stage anaerobic co-digestion of food waste and waste activated sludge: identifying bacterial and methanogenic archaeal communities and their correlations with performance parameters[J]. Bioresource Technology, 2019, 285: 121333.
    [25]
    AHAMED A, CHEN C L, RAJAGOPAL R, et al. Multi-phased anaerobic baffled reactor treating food waste[J]. Bioresource Technology, 2015, 182: 239-244.
    [26]
    ORTNER M, RAMEDER M, RACHBAUER L, et al. Bioavailability of essential trace elements and their impact on anaerobic digestion of slaughterhouse waste[J]. Biochemical Engineering Journal, 2015, 99: 107-113.
    [27]
    张万钦. 微量元素添加对餐厨垃圾和鸡粪厌氧消化性能的调控研究[D].北京:中国农业大学,2016.
    [28]
    FACCHIN V, CAVINATO C, FATONE F, et al. Effect of trace element supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials: the influence of inoculum origin[J]. Biochemical Engineering Journal, 2013, 70: 71-77.
    [29]
    黄霖琳, 李润东, 张万里. 餐厨垃圾厌氧系统失衡过程及金属微量元素强化效应研究[C]//2021年全国有机固废处理与资源化利用高峰论坛论文集, 2021: 340-348.
    [30]
    张万里. 餐厨垃圾厌氧消化特性及调控策略研究[D].大连:大连理工大学,2016.
    [31]
    孙彩玉, 乔艳云, 赵海玉, 等. Co、Ni微量元素对厨余垃圾厌氧发酵性能的影响[J]. 黑龙江科技大学学报, 2019,29(2): 210-215.
    [32]
    BANKS C J, ZHANG Y, JIANG Y, et al. Trace element requirements for stable food waste digestion at elevated ammonia concentrations[J]. Bioresource Technology, 2012, 104: 127-135.
    [33]
    张静. 餐厨垃圾厌氧消化产甲烷因素优化以及相应微生物群落结构解析[D].武汉:武汉大学,2017.
    [34]
    张照韩, 李增, 孙沐晨, 等. 微生物胞外电子传递过程强化机制及污染物高效转化[J]. 环境科学学报, 2020, 40(10): 3484-3493.
    [35]
    KABUTEY F T, ZHAO Q L, WEI L L, et al. An overview of plant microbial fuel cells (PMFCs): configurations and applications[J]. Renewable and Sustainable Energy Reviews, 2019, 110: 402-414.
    [36]
    WANG R M, LI C X, LV N, et al. Deeper insights into effect of activated carbon and nano-zero-valent iron addition on acidogenesis and whole anaerobic digestion[J]. Bioresource Technology, 2021, 324: 124671.
    [37]
    ROTARU A E, SHRESTHA P M, LIU F, et al. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri[J]. Applied and Environmental Microbiology, 2014, 80(15): 4599-4605.
    [38]
    YUAN T G, SHI X Y, SUN R, et al. Simultaneous addition of biochar and zero-valent iron to improve food waste anaerobic digestion[J]. Journal of Cleaner Production, 2021, 278: 123627.
    [39]
    LI D Y, SUN M Y, XU J F, et al. Effect of biochar derived from biogas residue on methane production during dry anaerobic fermentation of kitchen waste[J]. Waste Management, 2022, 149: 70-78.
    [40]
    ZHAO T, CHEN Y D, YU Q, et al. Enhancement of performance and stability of anaerobic co-digestion of waste activated sludge and kitchen waste by using bentonite[J]. PlOS One, 2019, 14(7): e0218856.
    [41]
    HU Y, LIU S, WANG X, et al. Enhanced anaerobic digestion of kitchen waste at different solids content by alkali pretreatment and bentonite addition: methane production enhancement and microbial mechanism[J]. Bioresource Technology, 2023, 369: 128369.
    [42]
    SU L H, SHI X L, GUO G Z, et al. Stabilization of sewage sludge in the presence of nanoscale zero-valent iron (nZVI): abatement of odor and improvement of biogas production[J]. Journal of Material Cycles and Waste Management, 2013, 15(4): 461-468.
    [43]
    王攀, 杜晓璐, 陈锡腾, 等. Fe0对污泥接种餐厨垃圾厌氧发酵及抗生素抗性基因的影响[J]. 环境工程, 2019, 37(7): 178-182.
    [44]
    YAN W L, HERZING A A, KIELY C J, et al. Nanoscale zero-valent iron (nZVI): aspects of the core-shell structure and reactions with inorganic species in water[J]. Manufactured Nanomaterials in Subsurface Systems, 2010, 118(3/4): 96-104.
    [45]
    ZHAO M X, TANG J Y, LIU Z Y, et al. Coupling effect of nanoscale zero-valent iron and sodium lauroyl sarcosinate on the biogas biological upgrading from kitchen wastewater by anaerobic digestion[J]. Journal of Environmental Chemical Engineering, 2023, 11(1): 109146.
    [46]
    ZHANG J, ZHANG R T, WANG H Y, et al. Direct interspecies electron transfer stimulated by granular activated carbon enhances anaerobic methanation efficiency from typical kitchen waste lipid-rapeseed oil[J]. Science of the Total Environment, 2020, 704: 135282.
    [47]
    WANG P, WANG X Z, CHEN X T, et al. Effects of bentonite on antibiotic resistance genes in biogas slurry and residue from thermophilic and mesophilic anaerobic digestion of food waste[J]. Bioresource Technology, 2021, 336: 125322.
    [48]
    MURATÇOBANOǦLU H, GÖKÇEK ÖB, MERT R A, et al. Simultaneous synergistic effects of graphite addition and co-digestion of food waste and cow manure: biogas production and microbial community[J]. Bioresource Technology, 2020, 309: 123365.
    [49]
    朱铁群, 李凯慧, 张杰. 活性污泥驯化的微生物生态学原理[J]. 微生物学通报, 2008,35(6): 939-943.
    [50]
    聂家民. 鸡粪促进餐厨垃圾高负荷厌氧发酵特性研究[D].天津:天津农学院,2020.
    [51]
    CHO S K, IM W T, KIM D H, et al. Dry anaerobic digestion of food waste under mesophilic conditions: performance and methanogenic community analysis[J]. Bioresource Technology, 2013, 131: 210-217.
    [52]
    陆玉, 钟慧, 丑三涛, 等. 乙酸驯化对厌氧污泥微生物群落结构及发酵特性的影响[J]. 环境科学学报, 2018,5(38): 1835-1842.
    [53]
    高一鸣. 丙酸产甲烷菌系驯化及对餐厨垃圾厌氧发酵强化作用研究[D].哈尔滨:东北农业大学,2018.
    [54]
    骆雪. 餐厨垃圾厌氧消化耐氨产甲烷菌的培养与提纯研究[D].南京:东南大学,2022.
    [55]
    吴桂菊, 邸玉翠, 申嫄, 等. 厌氧消化污泥的耐酸驯化培养[J]. 三峡环境与生态, 2013, 35(2): 45-48.
    [56]
    BERTIN L, BETTINI C, ZANAROLI G, et al. Acclimation of an anaerobic consortium capable of effective biomethanization of mechanically-sorted organic fraction of municipal solid waste through a semi-continuous enrichment procedure[J]. Journal of Chemical Technology & Biotechnology, 2012, 87(9): 1312-1319.
    [57]
    魏桃员, 温海东, 成家杨. 零价铁驯化污泥对餐厨垃圾厌氧消化产甲烷的影响[J]. 湖北农业科学, 2016, 55(14): 3618-3621.
  • Relative Articles

    [1]ZHAO Chutong, GUAN Yanyan, ZHANG Ze, WANG Xiaona, GAO Ming, WU Chuanfu, WANG Qunhui. EFFECT OF FLY ASH INCORPORATION ON HYDRATION MECHANISM AND HEAVY METAL SOLIDIFICATION/STABILIZATION EFFECT ON SLAG-BASED BACKFILLFING CEMENTITIOUS MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 213-220,189. doi: 10.13205/j.hjgc.202312026
    [2]LI Sha, WANG Zhaojia, WANG Mingwei, ZHENG Yongchao, ZHAN Jiayu. LONG-TERM LEACHING BEHAVIORS OF HEAVY METALS FROM STEEL SLAG IN CEMENT-BASED CEMENTITIOUS MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 136-142. doi: 10.13205/j.hjgc.202303018
    [3]XUE Chonghua, ZHAO Yimeng, SUN Jiarong, LUO Cheng, Li Wenhui, WANG Qing, LI Junqi, HUANG Xin. EFFECTS OF WATER ENVIRONMENTAL FACTORS ON NITROGEN AND PHOSPHORUS RELEASE FROM PIPELINE SEDIMENTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 89-98. doi: 10.13205/j.hjgc.202312011
    [4]DING Jiamin, LU Shengyong, LIN Xiaoqing, PENG Yaqi, HE Yao. INFLUENCE OF S-N-P-INHIBITOR ON FLY ASH CHARACTERISTICS AND PCDD/Fs CONTENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 88-93,17. doi: DOI:10.13205/j.hjgc.202207013
    [5]MA Weixing, ZOU Lihang, LI Xuan, LI Chaoxia, MA Zhiqiang, DU Hongqiu, DING Cheng, WU Xiangyang. SPECTRAL CHARACTERIZATION OF ORGANIC REMOVAL PERFORMANCE OF TWO DIFFERENT WATER SOURCE PRETREATMENT PROJECTS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 150-158,61. doi: 10.13205/j.hjgc.202208021
    [6]WU Hao, JIANG Cheng, CAO Wenping, LI Zebing. ADSORPTION ACTIVITY AND MECHANISM OF POLLUTANTS REMOVAL BY SUBSTRATES UNDER THE DYNAMIC STRENGTHENING OF VERTICAL FLOW[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 52-60,115. doi: DOI:10.13205/j.hjgc.202207008
    [7]CUI Feijian, QIN Guangxiong, ZENG Hailong, HUANG Zhiwei, LI Wenjing, YANG Hanjie, HU Yanfang, FANG Huaiyang, ZENG Fantang, DU Hongwei. SPATIAL DISTRIBUTION CHARACTERISTICS AND POLLUTION ASSESSMENT OF NITROGEN, PHOSPHORUS AND HEAVY METAL IN SURFACE SEDIMENTS OF HEAVILY POLLUTED TRIBUTARIES OF SHAHE RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 110-116. doi: 10.13205/j.hjgc.202201016
    [8]MA Tao, SONG Jiang-min, LIU Qun-qun, SHENG Yan-qing. COMPARISON OF ECOLOGICAL RISK ASSESSMENT OF HEAVY METALS IN DREDGED SEDIMENT TREATED BY DIFFERENT METHODS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 141-146,152. doi: 10.13205/j.hjgc.202102023
    [9]XU Wen-xuan, GUO Zhao-hui, XIAO Xi-yuan, PENG Chi, XIN Li-qing, TAO Ming-ming, HAN Liang-liang. ANAEROBIC FERMENTATION SLURRY RECYCLED FOR DEGRADATION OF HEAVY METAL-CONTAINING RICE STRAW[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 123-129. doi: 10.13205/j.hjgc.202101019
    [10]DAI Liang, ZHAO Wei-fan, ZHANG Hong-wei, HAN Tao, ZHANG Kang. RESEARCH PROGRESS ON ADSORPTION OF HEAVY METALS BY SEWAGE SLUDGE-BASED BIOCHAR IN WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 70-77. doi: 10.13205/j.hjgc.202012013
    [11]XU Si-han, WANG Min-yan, ZHANG Jin, DIAO Han-jie, LI Yan-ming, SHAN Sheng-dao, CAO Yu-cheng. EFFECT OF PYROLYSIS TIME ON CHARACTERISTICS AND HEAVY METAL ECOLOGICAL RISKS IN BIOCHAR MADE FROM WASTEWATER SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 162-167. doi: 10.13205/j.hjgc.202003027
    [12]CHENG Shu-zhen, SUN Chang-shun, WANG Li-xiang, GUO Xin-chao, LI Yuan-han. ANALYSIS ON CONTENT CHARACTERISTICS OF NUTRIENTS AND HEAVY METALS IN URBAN SLUDGE OF SHAANXI PROVINCE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 65-69. doi: 10.13205/j.hjgc.202005012
    [13]YE Chun-mei, WU Jian-qiang, HUANG Shen-fa, SHA Chen-yan, XU Zhi-hao, WANG Jing, ZHOU Dong, SUN Hai-tong, HAN Li-ming. SOLIDIFICATION/STABILIZATION OF HEAVY METAL CONTAMINATED SEDIMENT BY COMPOUD MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 125-130,51. doi: 10.13205/j.hjgc.202008021
    [15]Xu Yanzhe Fang Zhanqiang, . ADVANCES ON REMEDIATION OF HEAVY METAL IN THE SOIL BY BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 156-159. doi: 10.13205/j.hjgc.201502035
    [16]Sun Zijie Tian Kan Liu Tao Tian Honghai, . CURRENT SITUATION AND COUNTERMEASURES ON THE DEVELOPMENT ON HEAVY METAL REFERENCE MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 136-140. doi: 10.13205/j.hjgc.201503027
    [17]Yang Long Sun Changhong Li Shanshan Liu Guizhong, . COMPARATIVE STUDY ON HEAVY METAL POLLUTION OF SURFACE DUST IN TYPICAL INDUSTRIES ENVIRONMENT[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 122-125. doi: 10.13205/j.hjgc.201502027
    [18]Chen Yasong, Zhang Chao, Chen Zhenguo, Dong Wenjie, Xu Bingxin. EARLY WARNING OF ACTIVATED SLUDGE INHIBITORY ACTION BY HEAVY METALS BASED ON OXYGEN UPTAKE RATE INDEX[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 27-31. doi: 10.13205/j.hjgc.201502006
    [19]SIMULATION EXPERIMENT OF SINTERING CEMENT USING HEAVY METAL CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 91-94. doi: 10.13205/j.hjgc.201412016
    [20]RESEARCH PROGRESS ON IMMOBILIZATION AND REMOVAL OF HEAVY METALS FROM MUNICIPAL SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 82-86. doi: 10.13205/j.hjgc.201412014
  • Cited by

    Periodical cited type(2)

    1. 曹洋,顾敦罡,李光辉,黄民生,何文辉. 缓释氧材料在河湖水体污染修复中的应用研究进展. 华东师范大学学报(自然科学版). 2024(01): 9-16 .
    2. 刘佩贵,潘继隆,尚熳廷,程硕雅,姚梅. CaO_2缓释氧材料去除地下水氨氮的效能研究. 合肥工业大学学报(自然科学版). 2023(08): 1018-1023 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.3 %FULLTEXT: 12.3 %META: 86.5 %META: 86.5 %PDF: 1.1 %PDF: 1.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 18.1 %其他: 18.1 %其他: 0.3 %其他: 0.3 %China: 2.3 %China: 2.3 %Murfreesboro: 0.3 %Murfreesboro: 0.3 %[]: 0.3 %[]: 0.3 %上海: 3.7 %上海: 3.7 %东莞: 1.1 %东莞: 1.1 %临汾: 0.3 %临汾: 0.3 %乐山: 0.3 %乐山: 0.3 %九江: 1.7 %九江: 1.7 %伦敦: 0.3 %伦敦: 0.3 %信阳: 0.3 %信阳: 0.3 %北京: 6.0 %北京: 6.0 %十堰: 0.3 %十堰: 0.3 %南京: 0.3 %南京: 0.3 %厦门: 0.6 %厦门: 0.6 %台州: 0.3 %台州: 0.3 %合肥: 0.3 %合肥: 0.3 %哈尔滨: 0.3 %哈尔滨: 0.3 %天津: 1.4 %天津: 1.4 %常德: 0.3 %常德: 0.3 %张家口: 0.3 %张家口: 0.3 %徐州: 0.6 %徐州: 0.6 %成都: 0.9 %成都: 0.9 %扬州: 0.6 %扬州: 0.6 %抚州: 0.3 %抚州: 0.3 %无锡: 1.1 %无锡: 1.1 %昆明: 0.6 %昆明: 0.6 %晋城: 0.6 %晋城: 0.6 %朝阳: 0.3 %朝阳: 0.3 %杭州: 0.9 %杭州: 0.9 %武汉: 0.3 %武汉: 0.3 %济南: 0.3 %济南: 0.3 %济源: 0.3 %济源: 0.3 %湖州: 0.3 %湖州: 0.3 %漯河: 3.2 %漯河: 3.2 %芒廷维尤: 11.5 %芒廷维尤: 11.5 %芝加哥: 0.9 %芝加哥: 0.9 %苏州: 0.9 %苏州: 0.9 %蚌埠: 0.3 %蚌埠: 0.3 %衢州: 1.1 %衢州: 1.1 %西宁: 26.4 %西宁: 26.4 %西安: 0.6 %西安: 0.6 %贵阳: 0.3 %贵阳: 0.3 %运城: 3.2 %运城: 3.2 %遵义: 0.6 %遵义: 0.6 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.9 %郑州: 0.9 %鄂州: 0.3 %鄂州: 0.3 %重庆: 0.6 %重庆: 0.6 %长沙: 0.6 %长沙: 0.6 %长治: 0.3 %长治: 0.3 %阳泉: 1.4 %阳泉: 1.4 %青岛: 0.9 %青岛: 0.9 %香港: 0.3 %香港: 0.3 %其他其他ChinaMurfreesboro[]上海东莞临汾乐山九江伦敦信阳北京十堰南京厦门台州合肥哈尔滨天津常德张家口徐州成都扬州抚州无锡昆明晋城朝阳杭州武汉济南济源湖州漯河芒廷维尤芝加哥苏州蚌埠衢州西宁西安贵阳运城遵义邯郸郑州鄂州重庆长沙长治阳泉青岛香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (66) PDF downloads(4) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return