Citation: | YUAN Shuai, LI Yan, ZHAO Yuxiao, XU Haipeng, CHEN Lei, JIN Fuqiang, HUA Dongliang. INHIBITORY INSTABILITY ANALYSIS OF ANAEROBIC DIGESTION OF KITCHEN WASTE AND MICROECOLOGICAL ANALYSIS OF DIGESTION EFFICIENCY IMPROVEMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 184-192. doi: 10.13205/j.hjgc.202412022 |
[1] |
王炯科, 汤晓玉, 王文国, 等. 餐厨垃圾干式厌氧发酵研究进展[J]. 中国沼气, 2021, 39(3): 35-41.
|
[2] |
李琳. 污泥与餐厨垃圾联合厌氧技术的研究及应用[J]. 中国环保产业, 2019(2): 50-54.
|
[3] |
NIKITINA A A, ERMOSHIN A A, ZHURAVLEVA E A, et al. Application of polyacrylamide flocculant for stabilization of anaerobic digestion under conditions of excessive accumulation of volatile fatty acids[J]. Applied Sciences, 2020, 11(1): 100.
|
[4] |
李丹妮. 猪场粪污厌氧干发酵酸氨抑制规律研究[D]. 北京:中国农业科学院,2021.
|
[5] |
刘晓玲. 城市污泥厌氧发酵产酸条件优化及其机理研究[D]. 无锡:江南大学, 2009.
|
[6] |
JIANG Y, DENNEHY C, LAWLOR P G, et al. Inhibition of volatile fatty acids on methane production kinetics during dry co-digestion of food waste and pig manure[J]. Waste Management, 2018, 79: 302-311.
|
[7] |
JIANG Y, XIE S, DENNEHY C, et al. Inactivation of pathogens in anaerobic digestion systems for converting biowastes to bioenergy: a review[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109654.
|
[8] |
谢一涵, 方茜, 刘煜, 等. 剩余污泥在微氧条件下利用VFAs合成PHAs的工况优化[J]. 环境工程学报, 2020, 14(4): 1052-1058.
|
[9] |
李翠茹, 彭买姣, 谭周进. 肠道菌群相关短链脂肪酸的研究进展[J]. 世界华人消化杂志, 2022, 30(13): 562-570.
|
[10] |
唐涛涛, 李江, 杨钊, 等. 污泥厌氧消化功能微生物群落结构的研究进展[J]. 化工进展, 2020, 39(1): 320-328.
|
[11] |
WANG G J, LI Q, YUWEN C S, et al. Biochar triggers methanogenesis recovery of a severely acidified anaerobic digestion system via hydrogen-based syntrophic pathway inhibition[J]. International Journal of Hydrogen Energy, 2021, 46(15): 9666-9677.
|
[12] |
RAJAGOPAL R, MASSÉ DI, SINGH G. A critical review on inhibition of anaerobic digestion process by excess ammonia[J]. Bioresource Technology, 2013, 143: 632-641.
|
[13] |
FOTIDIS I A, KARAKASHEV D, KOTSOPOULOS T A, et al. Effect of ammonium and acetate on methanogenic pathway and methanogenic community composition[J]. FEMS Microbiology Ecology, 2013, 83(1): 38-48.
|
[14] |
BUHLMANN C H, MICKAN B S, JENKINS S N, et al. Ammonia stress on a resilient mesophilic anaerobic inoculum: methane production, microbial community, and putative metabolic pathways[J]. Bioresource Technology, 2019, 275: 70-77.
|
[15] |
孟伟, 查金, 张思梦, 等. 餐厨垃圾厌氧消化过程氨氮抑制及缓解办法综述[J]. 环境工程, 2019, 37(12): 177-182.
|
[16] |
KOSTER I, LETTINGA G. The influence of ammonium-nitrogen on the specific activity of pelletized methanogenic sludge[J]. Agricultural Wastes, 1984, 9(3): 205-216.
|
[17] |
FOTIDIS I, KARAKASHEV D, ANGELIDAKI I. The dominant acetate degradation pathway/methanogenic composition in full-scale anaerobic digesters operating under different ammonia levels[J]. International Journal of Environmental Science and Technology, 2014, 11: 2087-2094.
|
[18] |
SCHN&3220;RER A, NORDBERG Å. Ammonia, a selective agent for methane production by syntrophic acetate oxidation at mesophilic temperature[J]. Water Science and Technology, 2008, 57(5): 735-740.
|
[19] |
刘新媛. 污泥和餐厨废物两相双温发酵产氢产甲烷研究[D].天津:天津大学,2016.
|
[20] |
CHU C F, EBIE Y, XU K Q, et al. Characterization of microbial community in the two-stage process for hydrogen and methane production from food waste[J]. International Journal of Hydrogen Energy, 2010, 35(15): 8253-8261.
|
[21] |
刘红. 餐厨垃圾两相带压厌氧消化研究[D].北京:中国石油大学,2018.
|
[22] |
YAN B H, SELVAM A, WONG J W. Innovative method for increased methane recovery from two-phase anaerobic digestion of food waste through reutilization of acidogenic off-gas in methanogenic reactor[J]. Bioresource Technology, 2016, 217: 3-9.
|
[23] |
王优, 陈勇美, 张晓叶, 等. 淋滤-UASB工艺处理餐厨垃圾产气应用中试研究[J]. 江苏理工学院学报, 2015, 21(6): 50-54
,60.
|
[24] |
ZHANG L, LOH K C, ZHANG J, et al. Three-stage anaerobic co-digestion of food waste and waste activated sludge: identifying bacterial and methanogenic archaeal communities and their correlations with performance parameters[J]. Bioresource Technology, 2019, 285: 121333.
|
[25] |
AHAMED A, CHEN C L, RAJAGOPAL R, et al. Multi-phased anaerobic baffled reactor treating food waste[J]. Bioresource Technology, 2015, 182: 239-244.
|
[26] |
ORTNER M, RAMEDER M, RACHBAUER L, et al. Bioavailability of essential trace elements and their impact on anaerobic digestion of slaughterhouse waste[J]. Biochemical Engineering Journal, 2015, 99: 107-113.
|
[27] |
张万钦. 微量元素添加对餐厨垃圾和鸡粪厌氧消化性能的调控研究[D].北京:中国农业大学,2016.
|
[28] |
FACCHIN V, CAVINATO C, FATONE F, et al. Effect of trace element supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials: the influence of inoculum origin[J]. Biochemical Engineering Journal, 2013, 70: 71-77.
|
[29] |
黄霖琳, 李润东, 张万里. 餐厨垃圾厌氧系统失衡过程及金属微量元素强化效应研究[C]//2021年全国有机固废处理与资源化利用高峰论坛论文集, 2021: 340-348.
|
[30] |
张万里. 餐厨垃圾厌氧消化特性及调控策略研究[D].大连:大连理工大学,2016.
|
[31] |
孙彩玉, 乔艳云, 赵海玉, 等. Co、Ni微量元素对厨余垃圾厌氧发酵性能的影响[J]. 黑龙江科技大学学报, 2019,29(2): 210-215.
|
[32] |
BANKS C J, ZHANG Y, JIANG Y, et al. Trace element requirements for stable food waste digestion at elevated ammonia concentrations[J]. Bioresource Technology, 2012, 104: 127-135.
|
[33] |
张静. 餐厨垃圾厌氧消化产甲烷因素优化以及相应微生物群落结构解析[D].武汉:武汉大学,2017.
|
[34] |
张照韩, 李增, 孙沐晨, 等. 微生物胞外电子传递过程强化机制及污染物高效转化[J]. 环境科学学报, 2020, 40(10): 3484-3493.
|
[35] |
KABUTEY F T, ZHAO Q L, WEI L L, et al. An overview of plant microbial fuel cells (PMFCs): configurations and applications[J]. Renewable and Sustainable Energy Reviews, 2019, 110: 402-414.
|
[36] |
WANG R M, LI C X, LV N, et al. Deeper insights into effect of activated carbon and nano-zero-valent iron addition on acidogenesis and whole anaerobic digestion[J]. Bioresource Technology, 2021, 324: 124671.
|
[37] |
ROTARU A E, SHRESTHA P M, LIU F, et al. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri[J]. Applied and Environmental Microbiology, 2014, 80(15): 4599-4605.
|
[38] |
YUAN T G, SHI X Y, SUN R, et al. Simultaneous addition of biochar and zero-valent iron to improve food waste anaerobic digestion[J]. Journal of Cleaner Production, 2021, 278: 123627.
|
[39] |
LI D Y, SUN M Y, XU J F, et al. Effect of biochar derived from biogas residue on methane production during dry anaerobic fermentation of kitchen waste[J]. Waste Management, 2022, 149: 70-78.
|
[40] |
ZHAO T, CHEN Y D, YU Q, et al. Enhancement of performance and stability of anaerobic co-digestion of waste activated sludge and kitchen waste by using bentonite[J]. PlOS One, 2019, 14(7): e0218856.
|
[41] |
HU Y, LIU S, WANG X, et al. Enhanced anaerobic digestion of kitchen waste at different solids content by alkali pretreatment and bentonite addition: methane production enhancement and microbial mechanism[J]. Bioresource Technology, 2023, 369: 128369.
|
[42] |
SU L H, SHI X L, GUO G Z, et al. Stabilization of sewage sludge in the presence of nanoscale zero-valent iron (nZVI): abatement of odor and improvement of biogas production[J]. Journal of Material Cycles and Waste Management, 2013, 15(4): 461-468.
|
[43] |
王攀, 杜晓璐, 陈锡腾, 等. Fe0对污泥接种餐厨垃圾厌氧发酵及抗生素抗性基因的影响[J]. 环境工程, 2019, 37(7): 178-182.
|
[44] |
YAN W L, HERZING A A, KIELY C J, et al. Nanoscale zero-valent iron (nZVI): aspects of the core-shell structure and reactions with inorganic species in water[J]. Manufactured Nanomaterials in Subsurface Systems, 2010, 118(3/4): 96-104.
|
[45] |
ZHAO M X, TANG J Y, LIU Z Y, et al. Coupling effect of nanoscale zero-valent iron and sodium lauroyl sarcosinate on the biogas biological upgrading from kitchen wastewater by anaerobic digestion[J]. Journal of Environmental Chemical Engineering, 2023, 11(1): 109146.
|
[46] |
ZHANG J, ZHANG R T, WANG H Y, et al. Direct interspecies electron transfer stimulated by granular activated carbon enhances anaerobic methanation efficiency from typical kitchen waste lipid-rapeseed oil[J]. Science of the Total Environment, 2020, 704: 135282.
|
[47] |
WANG P, WANG X Z, CHEN X T, et al. Effects of bentonite on antibiotic resistance genes in biogas slurry and residue from thermophilic and mesophilic anaerobic digestion of food waste[J]. Bioresource Technology, 2021, 336: 125322.
|
[48] |
MURATÇOBANOǦLU H, GÖKÇEK ÖB, MERT R A, et al. Simultaneous synergistic effects of graphite addition and co-digestion of food waste and cow manure: biogas production and microbial community[J]. Bioresource Technology, 2020, 309: 123365.
|
[49] |
朱铁群, 李凯慧, 张杰. 活性污泥驯化的微生物生态学原理[J]. 微生物学通报, 2008,35(6): 939-943.
|
[50] |
聂家民. 鸡粪促进餐厨垃圾高负荷厌氧发酵特性研究[D].天津:天津农学院,2020.
|
[51] |
CHO S K, IM W T, KIM D H, et al. Dry anaerobic digestion of food waste under mesophilic conditions: performance and methanogenic community analysis[J]. Bioresource Technology, 2013, 131: 210-217.
|
[52] |
陆玉, 钟慧, 丑三涛, 等. 乙酸驯化对厌氧污泥微生物群落结构及发酵特性的影响[J]. 环境科学学报, 2018,5(38): 1835-1842.
|
[53] |
高一鸣. 丙酸产甲烷菌系驯化及对餐厨垃圾厌氧发酵强化作用研究[D].哈尔滨:东北农业大学,2018.
|
[54] |
骆雪. 餐厨垃圾厌氧消化耐氨产甲烷菌的培养与提纯研究[D].南京:东南大学,2022.
|
[55] |
吴桂菊, 邸玉翠, 申嫄, 等. 厌氧消化污泥的耐酸驯化培养[J]. 三峡环境与生态, 2013, 35(2): 45-48.
|
[56] |
BERTIN L, BETTINI C, ZANAROLI G, et al. Acclimation of an anaerobic consortium capable of effective biomethanization of mechanically-sorted organic fraction of municipal solid waste through a semi-continuous enrichment procedure[J]. Journal of Chemical Technology & Biotechnology, 2012, 87(9): 1312-1319.
|
[57] |
魏桃员, 温海东, 成家杨. 零价铁驯化污泥对餐厨垃圾厌氧消化产甲烷的影响[J]. 湖北农业科学, 2016, 55(14): 3618-3621.
|
[1] | SHAO Yanjun, WANG Bing, ZHOU Yu, SHI Jun, ZONG Zhenghui, LIU Guoqiang, TAO Xiang, ZHANG Xin, HUANG Kaiwen, WANG Yan, WANG Shuo, LI Ji. PRELIMINARY STUDY ON APPLICATION OF SLUDGE DENSIFICATION SYSTEM TECHNOLOGY IN AN INVERTED AAO CONTINUOUS FLOW WASTEWATER TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 72-79. doi: 10.13205/j.hjgc.202309009 |
[2] | DONG Wenyi, DU Hong, ZENG Yuanxin, HUANG Xiao, WANG Hongjie, DAI Zhongyi. REVIEW OF PRETREATMENT PROCESS FOR MUNICIPAL SLUDGE FERMENTATION FOR PRODUCING VOLATILE FATTY ACIDS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 241-251. doi: 10.13205/j.hjgc.202307033 |
[3] | HU Xiaobing, LI Jingjing, SHEN Yijun, CHANG Jing, LIU Haoyu, SU Junwen, ZHONG Meiying. EFFECT OF INFLUENT COD CONCENTRATION ON MOTION VELOCITY OF MICROFAUNA IN ACTIVATED SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 109-115. doi: 10.13205/j.hjgc.202307015 |
[4] | LIU Yu-long, ZHANG Zhi-feng, ZHANG Li, ZHANG Zhe, QIN Lu, CHAI Guo-dong, ZHENG Xing, WANG Dong-qi. EFFECT OF INFLUENT CONDITIONS ON PERFORMANCE AND MICROORGANISMS IN THE SIDE-STREAM ACTIVATED SLUDGE HYDROLYSIS PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 146-151,158. doi: 10.13205/j.hjgc.202205021 |
[5] | WANG Xinlong, SUN Pinghe, ZHAO Mingzhe, XING Shikuan, FENG Deshan, TANG Lei. INFLUENCE OF DIFFERENT CONSOLIDATION FACTORS ON MOISTURE CONTENT AND PERMEABILITY OF WASTE SLURRY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 84-89. doi: 10.13205/j.hjgc.202208011 |
[6] | YAN Qiu-he, WANG Hong-tao, LIU Yan-ting. EVALUATION OF CLASSIFICATION EFFECT OF KITCHEN WASTE AND OTHER WASTE AND ENERGY UTILIZATION EFFICIENCY USING MOISTURE CONTENT: A CASE STUDY OF ZHANGJIAGANG[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 105-109,159. doi: 10.13205/j.hjgc.202102016 |
[7] | ZHOU Yi-xin, LI Ji, WANG Yan, ZHENG Kai-kai, WANG Xiao-fei, ZHI Yao. REASON ANALYSIS AND IMPROVEMENT MEASURES FOR LOW POLLUTANTS CONCENTRATION OF INFLUENT WATER OF URBAN SEWAGE TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 25-30. doi: 10.13205/j.hjgc.202112004 |
[8] | GUO Zhao-qiang, SHANG Shuang, LAN Kui, LI Ze-shan, XIONG Tao, ZHANG Juan-juan, WANG Yan, QIN Zhen-hua, LI Jian-fen. HYDROGEN-RICH SYNGAS PRODUCTION BY CO-PYROLYSIS OF WHEAT STALK AND WET SEWAGE SLUDGE WITH DIFFERENT MOISTURE CONTENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 160-164,214. doi: 10.13205/j.hjgc.202005028 |
1. | 张宏,杨佳佳,方燕珍. 金华市污染地块治理与修复研究. 中国资源综合利用. 2024(06): 227-230 . ![]() |