Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LI Zhili, WANG Haitao, HUO Hanxin, ZHAO Jin, ZHANG Yizhong, WANG Xunliang, GUO Jian, JIANG Tianxiang, MA Yuhui. MAGNETIC BIOCHAR AEROGEL FROM WASTE CORRUGATED PAPER FOR ADSORPTION OF METHYLENE BLUE FROM WATER: PREPAREATRION AND PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 210-217. doi: 10.13205/j.hjgc.202412025
Citation: LI Zhili, WANG Haitao, HUO Hanxin, ZHAO Jin, ZHANG Yizhong, WANG Xunliang, GUO Jian, JIANG Tianxiang, MA Yuhui. MAGNETIC BIOCHAR AEROGEL FROM WASTE CORRUGATED PAPER FOR ADSORPTION OF METHYLENE BLUE FROM WATER: PREPAREATRION AND PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 210-217. doi: 10.13205/j.hjgc.202412025

MAGNETIC BIOCHAR AEROGEL FROM WASTE CORRUGATED PAPER FOR ADSORPTION OF METHYLENE BLUE FROM WATER: PREPAREATRION AND PERFORMANCE

doi: 10.13205/j.hjgc.202412025
  • Received Date: 2023-12-26
    Available Online: 2025-01-18
  • A novel magnetic biochar aerogel (BCAFe-600) was prepared from waste corrugated paper via crushing followed by impregnation with FeCl3/ethanol solution and carbonization. The materials’ morphology, elemental composition, crystal structure, surface area, surface functional groups, mechanical property, magnetic property, hydrophilicity, and Zeta potential were analyzed and compared. The adsorption isotherm of BCAFe-600 for methylene blue was studied, and BCAFe-600 was used as a magnetic separable and floatable adsorbent for the purification of the simulated methylene blue polluted natural water. The results showed that the hydrophilic BCAFe-600 was composed of criss-crossed ribbon-like carbon fibers, and the main chemical constituents of BCAFe-600 were amorphous carbon, maghemite, and calcite. The presence of FeCl3 benefited the evolution of porous structure and the mechanical strength of BCAFe-600, and maghemite derived from FeCl3 gave magnetism to BCAFe-600, possessing a BET surface area of 205 m2/g and a saturated magnetization value of 7.62 emu/g. The Langmuir model was applicable for fitting the adsorption isotherm data for methylene blue with a maximum adsorption capacity of 35.6 mg/g, and the adsorption kinetics of methylene blue on the floatable BCAFe-600 complied with pseudo-second-order kinetics model.
  • [1]
    汝伟,张建斌,钱伟杰,等.MBR-Fenton催化氧化组合工艺深度处理印染废水[J]. 环境工程,2021,39(11):149-158.
    [2]
    张金玉,金晨,颛孙梦林,等.聚丙烯酰胺辅助水热法制备碳纳米球及其亚甲基蓝吸附特性[J]. 功能材料,2023,54(8):8110-8117.
    [3]
    陈启杰,梁春艳,赵雅兰,等.淀粉纳米晶接枝聚乙烯亚胺对阴离子染料的吸附[J]. 环境工程,2023,41(3):57-64.
    [4]
    侯浩强,孙文野,李双宾,等.木棉基炭气凝胶的制备、表征及其吸附性能研究[J]. 林产化学与工业,2021,41(2):47-54.
    [5]
    YANG H, SUN J F, ZHANG Y, Et al. Preparation of hydrophobic carbon aerogel using cellulose extracted from luffa sponge for adsorption of diesel oil[J]. Ceramics International, 2021, 47:33827-33834.
    [6]
    LI J H, CHENG R, CHEN J, et al. Microscopic mechanism about the selective adsorption of Cr(Ⅵ) from salt solution on nitrogen-doped carbon aerogel microsphere pyrolysis products[J]. Science of the Total Environment, 2021, 798:149331.
    [7]
    ZHAI S M, CHEN R N, LIU J X, et al. N-doped magnetic carbon aerogel for the efficient adsorption of Congo red[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 120: 161-168.
    [8]
    JIANG X C, XIANG X T, PENG S J, et al. Facile preparation of nitrogen-doped activated mesoporous carbon aerogel from chitosan for methyl orange adsorption from aqueous solution[J]. Cellulose, 2019, 26: 4515-4527.
    [9]
    张洁,段荣帅,李子江,等. 生物质基碳气凝胶的研究进展[J]. 生物质化学工程,2021,55(1):91-100.
    [10]
    郑昊,周景辉,李尧,等. 生物质基炭气凝胶的制备及其应用于超级电容器[J]. 林产化学与工业,2022,42:76-82.
    [11]
    周亚兰,闫雯,罗路,等.酚醛基炭气凝胶的研究进展[J]. 化工进展,2022,41(4):1970-1981.
    [12]
    SUN S J, YAN Q H, WU M F, et al. Carbon aerogel-based materials for secondary batteries[J]. Sustainable Materials and Technologies, 2021, 30:e00342.
    [13]
    ZHANG H M, FENG J Z, LI L J, et al. Preparation of a carbon fibre-reinforced carbon aerogel and its application as a high-temperature thermal insulator[J]. RSC Advances, 2022, 12:13783-13791.
    [14]
    PANDEY A P, BHATNAGAR A, SHUKLA V, et al. Hydrogen storage properties of carbon aerogel synthesized by ambient pressure drying using new catalyst triethylamine[J]. International Journal of Hydrogen Energy, 2020, 45:30818-30827.
    [15]
    KOHLI D K, SINGH R, SINGH A, et al. Enhanced salt-adsorption capacity of ambient pressure dried carbon aerogel activated by CO2 for capacitive deionization application[J]. Desalination and Water Treatment, 2014, 54: 2825-2831.
    [16]
    DONG Z M, CHENG L, SUN T, et al. Carboxylation modified meso-porous carbon aerogel templated by ionic liquid for solid-phase microextraction of trace tetracyclines residues using HPLC with UV detection[J]. Mikrochimica Acta, 2021, 188:43.
    [17]
    XU H, HUANG L J, XU M Z, et al. Preparation and properties of cellulose-based films regenerated from waste corrugated cardboards using [Amim]Cl/CaCl2[J]. ACS Omega, 2020, 5:23743-23754.
    [18]
    SOTOUDEHNIA F, BABA RABIU A, ALAYAT A, et al. Characterization of bio-oil and biochar from pyrolysis of waste corrugated cardboard[J]. Journal of Analytical and Applied Pyrolysis, 2020, 145:104722.
    [19]
    DING Z H, XU X B, PHAN T, et al. Carbonized waste corrugated paper packaging boxes as low-cost adsorbent for removing aqueous Pb(Ⅱ), Cd(Ⅱ), Zn(Ⅱ), and methylene blue[J]. Polish Journal of Environmental Studies, 2018, 27:2483-2491.
    [20]
    SIDDIQUE A, NAYAK A K, SINGH J. Synthesis of FeCl3-activated carbon derived from waste Citrus limetta peels for removal of fluoride: an eco-friendly approach for the treatment of groundwater and bio-waste collectively[J]. Groundwater for Sustainable Development, 2020, 10:100339.
    [21]
    XU Z H, ZHOU Y W, SUN Z H, et al. Understanding reactions and pore-forming mechanisms between waste cotton woven and FeCl3 during the synthesis of magnetic activated carbon[J]. Chemosphere, 2020, 241:125120.
    [22]
    MA Y H, CAO J R. Facile preparation of magnetic porous carbon monolith from waste corrugated cardboard box for solar steam generation and adsorption[J]. Biomass Conversion and Biorefinery, 2022, 12:2185-2202.
    [23]
    XIA S W, YANG H P, LEI S S, et al. Iron salt catalytic pyrolysis of biomass: influence of iron salt type[J]. Energy, 2023, 262:125415.
    [24]
    XU Z H, SUN Z H, ZHOU Y W, et al. Insights into the pyrolysis behavior and adsorption properties of activated carbon from waste cotton textiles by FeCl3-activation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582:123934.
    [25]
    平松,杨茸茸,吴雷,等.改性多孔兰炭末吸附处理模拟含铬废水[J]. 环境工程,2023,41(2):7-15.
  • Relative Articles

    [1]SONG Lusheng, SUN Zhenzhou, HU Jing, DENG Qinghai. POLLUTION CHARACTERISTICS AND SOURCE APPORTIONMENT OF HEAVY METALS IN AN ABANDONED IRON ORE AND DOWNSTREAM FARMLAND SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 155-164. doi: 10.13205/j.hjgc.202410019
    [2]BI Xinqi, GONG Zhiwei, MA Jie, ZHOU Lichang, JIANG Jinqi, GUO Gang. EFFECTS OF AEROBIC/ANAEROBIC ENVIRONMENTS ON MICROBIAL DEGRADATION EFFICIENCY OF TYPICAL MICROPLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 88-97. doi: 10.13205/j.hjgc.202407009
    [3]PU Yitao, YANG Ruyue, XU Yirong, KE Shuizhou, WANG Xiaodong, GAO Jingsi, XIAO Kang. RESEARCH PROGRESS ON EFFECTS OF MICROPLASTICS ON EXCESS SLUDGE AND THEIR DEGRADATION PATHWAYS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 48-56. doi: 10.13205/j.hjgc.202402006
    [4]QIU Fuguo, LIANG Anqi, TONG Shiyu, WANG Chun. INVESTIGATION OF OCCURRENCE REGULARITY OF MICROPLASTICS IN RAINWATER RUNOFF[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 106-112. doi: 10.13205/j.hjgc.202407011
    [5]YU Hong, SHI Lingling. EFFECTS OF MICROPLASTICS ON MICROBIAL COMMUNITIES AND FUNCTIONAL GENES IN SOIL WITH DIFFERENT AGGREGATE-FRACTION LEVELS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 167-174. doi: 10.13205/j.hjgc.202402020
    [6]LIU Jinhe, ZHENG Yuna, LIU Peng, LIN Kuangfei, HUANG Kai, ZHOU Changrui. SIMULATION OF POLLUTION CHARACTERISTICS AND MIGRATION LAW OF CADMIUM IN SOIL OF A TYPICAL ELECTRONIC WASTE DISMANTLING AREA IN TAIZHOU[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 150-158. doi: 10.13205/j.hjgc.202408018
    [7]HUANG Xi, ZHANG Qiaoqiao, YAN Jin, MA Jingjing, LUO Zejiao. POLLUTION SITUATION AND RISK ASSESSMENT OF MICROPLASTICS IN AGRICULTURAL SOIL IN WUHAN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 136-145. doi: 10.13205/j.hjgc.202406016
    [8]LIU Haizhu, BAI Junhong, WANG Yaqi, ZHANG Ling, LIU Zhe. RESEARCH PROGRESS AND HOTSPOT ANALYSIS OF SEDIMENT MICROPLASTICS BASED ON CITESPACE LITERATURE METROLOGY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 42-50. doi: 10.13205/j.hjgc.202301006
    [9]ZHEN Zhaogan, SU Yang, LUO Junxiao, AN Tong, CHEN Yao, GOU Min. EFFECTS OF POLYETHYLENE MICROPLASTICS ON MESOPHILIC AND THERMOPHILIC ANAEROBIC DIGESTION OF SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 86-91,130. doi: 10.13205/j.hjgc.202304012
    [10]LI Yan-xue, ZHANG Meng-zhu, SHU Sha-sha, ZOU Jun-han, JIAO Wei, ZHOU Jun-yu. QUANTITATIVE IDENTIFICATION OF ANTHROPOGENIC HEAVY METAL SOURCES IN FARMLAND SOIL BASED ON ENRICHMENT FACTOR AND MLR-APCS MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 173-177,232. doi: 10.13205/j.hjgc.202209023
    [11]LIU Chao, ZHANG Xiao-ran, LIU Jun-feng, ZHANG Zi-yang, GONG Yong-wei, LI Hai-yan. RELEASE OF MICROPLASTICS FROM PLASTIC PRODUCTS AND THEIR ENVIRONMENTAL TRANSPORT BEHAVIORS: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 205-217. doi: 10.13205/j.hjgc.202205030
    [12]QIU Fuguo, TONG Shiyu, WANG Xiaoqian. RESEARCH PROGRESS ON OCCURRENCE STATUS AND ECOLOGICAL HAZARDS OF MICROPLASTICS IN WATER ENVIRONMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 221-228. doi: 10.13205/j.hjgc.202203032
    [13]LUO Xiao-feng, ZHU Ling-long, XU Guo-liang, YU Shi-qin, OU Shi-ting, CHEN Xiao-hua. TOXICITY OF SUBMICROPLASTIC ON SOIL COLLEMBOLANS FOLSOMIA CANDIDA BY FOOD EXPOSURE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 187-193. doi: 10.13205/j.hjgc.202101029
    [14]DOU Wei-qiang, AN Yi, QIN Li, LIN Da-song, DONG Ming-ming. CHARACTERISTICS OF VERTICAL DISTRIBUTION AND MIGRATION OF HEAVY METALS IN FARMLAND SOILS AND ECOLOGICAL RISK ASSESSMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 166-172. doi: 10.13205/j.hjgc.202102027
    [15]LIANG Shuai, HAN Bing, NIU Ze-pu, ZHAO Ling-dong, GU Jin-yi, WANG Wan-wan, ZHANG Li-feng, ZHANG Yang. SOURCE, MIGRATION AND ECOTOXICOLOGICAL EFFECTS OF MICRO-PLASTICS IN FRESHWATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 1-9,70. doi: 10.13205/j.hjgc.202112001
    [16]LIU Peng-xiao, WANG Xu, FENG Ling. OCCURRENCES, RESOURCES AND RISK OF ANTIBIOTICS IN AQUATIC ENVIRONMENT: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 36-42. doi: 10.13205/j.hjgc.202005007
    [17]HOU Jun-hua, TAN Wen-bing, YU Hong, DANG Qiu-ling, LI Ren-fei, XI Bei-dou. MICROPLASTICS IN SOIL ECOSYSTEM: A REVIEW ON SOURCES, FATE, AND ECOLOGICAL IMPACT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 16-27,15. doi: 10.13205/j.hjgc.202002002
  • Cited by

    Periodical cited type(19)

    1. 李巧云,赵航航,杨婵,李鹏飞,齐文博,宋凤敏. 汉江上游农田土壤微塑料与重金属污染特征及生态风险评价. 环境科学. 2025(01): 419-429 .
    2. 游洋洋,张涛,梁增强,霍宁. 我国农田土壤中微塑料污染研究进展与环境管理现状. 环境生态学. 2024(02): 101-106 .
    3. 朱晓艳,王琪琛,姜懿真,武忠,柳钟惠,陈吉孝,王钰琳,袁宇翔. 微塑料对稻田土壤-水界面重金属分布及迁移的影响. 水生态学杂志. 2024(03): 10-20 .
    4. 温浩军,陈学庚,陈浩,缑海啸. 农田地膜回收机械应用现状与发展. 农业环境科学学报. 2024(06): 1271-1277 .
    5. 黄茜,张俏俏,颜瑾,马晶晶,罗泽娇. 武汉农用地土壤中微塑料污染状况和生态风险初探. 环境工程. 2024(06): 136-145 . 本站查看
    6. 熊新港,殷伟庆,常铖炜,王超,林华星,赵文青,李冠霖,解清杰. 农田土壤微塑料的检测及环境行为研究进展. 土壤通报. 2024(03): 886-900 .
    7. 杨文硕,梁鑫,王旭刚,石兆勇,杜鹃. 微塑料对土壤理化性质和生物特性的影响及其降解研究进展. 江苏农业科学. 2024(16): 20-29 .
    8. 路浩东,赵少婷,张俊丽,王蕊,贾汉忠,代允超. 不同类型地膜降解规律及其对土壤理化性质的影响. 农业资源与环境学报. 2024(05): 1171-1181 .
    9. 张茵,侯建平. 试论生态环境保护视域下农业生产用地土壤中塑料微粒污染问题. 中国农业综合开发. 2024(10): 40-45 .
    10. 张蕾,孙东,张建强,朱艳宏,陆一新,李经涵,何杨. 农膜微塑料与酞酸酯在土壤中迁移的研究进展. 土壤. 2024(05): 938-947 .
    11. 姜晓旭,封雪,周笑白,袁广旺,李宗超,郑明辉,李名升. 土壤中微塑料污染现状与检测技术研究进展. 环境化学. 2023(01): 163-175 .
    12. 邓爱琴,赵保卫,朱正钰,段凯祥,张鑫,索进苗,杨茂莺,杨佳妮. 土壤中微塑料的来源与其生态毒理效应研究进展. 环境化学. 2023(02): 345-357 .
    13. 仲子文,李冰,李彦,李德伟,刘延美,颜晓,刘宾绪,刘兆东,王艳芹,孙斌,薄录吉. 我国农田土壤微塑料和重金属污染现状与研究展望. 山东农业科学. 2023(02): 165-172 .
    14. 史增录,张学军,程金鹏,周鑫城,张朝书. 垂直双排链式残膜回收机输膜卸膜装置设计与试验. 干旱地区农业研究. 2023(03): 257-265 .
    15. 陈方涛,刘振鹏,金荣荣,吕军. 浅议潍坊市农村生态环境污染成因及治理经验. 南方农业. 2023(07): 90-92+100 .
    16. 刘明宇,郑旭,强丽媛,李鲁华,张若宇,王家平. 1994-2020年中国农用薄膜使用量变化与农膜微塑料污染现状分析. 生态环境学报. 2023(11): 2050-2061 .
    17. 臧宇飞,李一凡,吴金柱,徐保建,陈飞勇,王静,邵媛媛,宋扬,王全勇,张瑞娜,刘兵. 城镇有机垃圾热解工艺研究进展. 当代化工. 2022(04): 928-935 .
    18. 张琳,王斯腾,马丽新. 一次性聚丙烯餐盒中汞、砷迁移量分析研究. 环境科技. 2022(03): 69-72 .
    19. 贾涛,薛颖昊,靳拓,鲁天宇. 土壤中微塑料的来源、分布及其对土壤潜在影响的研究进展. 生态毒理学报. 2022(05): 202-216 .

    Other cited types(25)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.8 %FULLTEXT: 14.8 %META: 82.7 %META: 82.7 %PDF: 2.5 %PDF: 2.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.5 %其他: 15.5 %其他: 1.1 %其他: 1.1 %Absecon: 0.1 %Absecon: 0.1 %China: 0.3 %China: 0.3 %[]: 0.1 %[]: 0.1 %上海: 4.7 %上海: 4.7 %东莞: 1.1 %东莞: 1.1 %临汾: 0.3 %临汾: 0.3 %丽水: 0.3 %丽水: 0.3 %乌鲁木齐: 0.4 %乌鲁木齐: 0.4 %伊犁: 0.4 %伊犁: 0.4 %保定: 0.1 %保定: 0.1 %六安: 0.1 %六安: 0.1 %兰州: 0.3 %兰州: 0.3 %北京: 6.1 %北京: 6.1 %南京: 2.1 %南京: 2.1 %南宁: 0.3 %南宁: 0.3 %南平: 0.1 %南平: 0.1 %南昌: 0.6 %南昌: 0.6 %台州: 0.6 %台州: 0.6 %合肥: 1.0 %合肥: 1.0 %吉林: 0.3 %吉林: 0.3 %呼和浩特: 0.4 %呼和浩特: 0.4 %哈尔滨: 0.1 %哈尔滨: 0.1 %大连: 0.3 %大连: 0.3 %天津: 0.6 %天津: 0.6 %太原: 0.4 %太原: 0.4 %威海: 0.8 %威海: 0.8 %宁波: 0.4 %宁波: 0.4 %安康: 0.1 %安康: 0.1 %安阳: 0.3 %安阳: 0.3 %宣城: 0.1 %宣城: 0.1 %常州: 0.3 %常州: 0.3 %常德: 0.1 %常德: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.6 %广州: 0.6 %开封: 0.4 %开封: 0.4 %张家口: 1.0 %张家口: 1.0 %德州: 0.6 %德州: 0.6 %德阳: 0.8 %德阳: 0.8 %成都: 1.4 %成都: 1.4 %扬州: 1.0 %扬州: 1.0 %无锡: 0.4 %无锡: 0.4 %昆明: 0.6 %昆明: 0.6 %晋中: 0.4 %晋中: 0.4 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.3 %朝阳: 0.3 %杭州: 1.4 %杭州: 1.4 %武汉: 0.6 %武汉: 0.6 %汕头: 0.3 %汕头: 0.3 %江门: 0.1 %江门: 0.1 %沈阳: 0.3 %沈阳: 0.3 %沧州: 0.3 %沧州: 0.3 %泰勒: 0.4 %泰勒: 0.4 %泰安: 0.7 %泰安: 0.7 %泰州: 0.8 %泰州: 0.8 %洛阳: 0.1 %洛阳: 0.1 %济源: 0.3 %济源: 0.3 %深圳: 0.1 %深圳: 0.1 %湖州: 0.6 %湖州: 0.6 %湛江: 0.8 %湛江: 0.8 %滁州: 0.1 %滁州: 0.1 %漯河: 1.0 %漯河: 1.0 %焦作: 0.3 %焦作: 0.3 %瓦赫宁恩: 0.4 %瓦赫宁恩: 0.4 %白城: 0.1 %白城: 0.1 %石家庄: 0.6 %石家庄: 0.6 %石河子: 0.1 %石河子: 0.1 %福州: 0.3 %福州: 0.3 %秦皇岛: 1.4 %秦皇岛: 1.4 %绍兴: 0.1 %绍兴: 0.1 %芒廷维尤: 20.8 %芒廷维尤: 20.8 %芝加哥: 1.1 %芝加哥: 1.1 %苏州: 0.3 %苏州: 0.3 %莫斯科: 0.8 %莫斯科: 0.8 %衡水: 0.3 %衡水: 0.3 %衡阳: 0.1 %衡阳: 0.1 %西宁: 6.0 %西宁: 6.0 %西安: 1.8 %西安: 1.8 %贵阳: 0.1 %贵阳: 0.1 %运城: 1.5 %运城: 1.5 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.9 %郑州: 1.9 %鄂州: 0.3 %鄂州: 0.3 %重庆: 0.4 %重庆: 0.4 %镇江: 0.4 %镇江: 0.4 %长沙: 1.7 %长沙: 1.7 %长治: 0.1 %长治: 0.1 %阜阳: 0.1 %阜阳: 0.1 %阳泉: 0.1 %阳泉: 0.1 %青岛: 0.6 %青岛: 0.6 %马德里: 2.1 %马德里: 2.1 %其他其他AbseconChina[]上海东莞临汾丽水乌鲁木齐伊犁保定六安兰州北京南京南宁南平南昌台州合肥吉林呼和浩特哈尔滨大连天津太原威海宁波安康安阳宣城常州常德平顶山广州开封张家口德州德阳成都扬州无锡昆明晋中晋城朝阳杭州武汉汕头江门沈阳沧州泰勒泰安泰州洛阳济源深圳湖州湛江滁州漯河焦作瓦赫宁恩白城石家庄石河子福州秦皇岛绍兴芒廷维尤芝加哥苏州莫斯科衡水衡阳西宁西安贵阳运城遵义邯郸郑州鄂州重庆镇江长沙长治阜阳阳泉青岛马德里

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (60) PDF downloads(1) Cited by(44)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return