Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
XU Yi, JIANG Xu, XU Yingming. EFFECT OF ADDING KNO3 AND KH2PO4 ON IMMOBILIZATION REMEDIATION OF CADMIUM IN POLLUTED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 229-236. doi: 10.13205/j.hjgc.202412027
Citation: XU Yi, JIANG Xu, XU Yingming. EFFECT OF ADDING KNO3 AND KH2PO4 ON IMMOBILIZATION REMEDIATION OF CADMIUM IN POLLUTED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 229-236. doi: 10.13205/j.hjgc.202412027

EFFECT OF ADDING KNO3 AND KH2PO4 ON IMMOBILIZATION REMEDIATION OF CADMIUM IN POLLUTED SOIL

doi: 10.13205/j.hjgc.202412027
  • Received Date: 2024-05-21
    Available Online: 2025-01-18
  • Immobilization remediation is a commonly used remediation method for soil cadmium pollution, but there is poor research on the effect of fertilization on the immobilization remediation of soil Cd pollution. In this paper, KNO3 (K1) and KH2PO4 (K2) were added in Cd polluted soil, and sepiolite was used as an amendment. Through the rape pot experiment, the effects of adding different doses of two potassium fertilizers on the remediation effect of soil Cd pollution under the condition of sepiolite immobilization (S) were studied. The results showed that compared with S treatment, in S+K1 treatment, the soil available Cd content increased by 22.58% to 29.03%, but there was no significant difference between different doses of KNO3 added. The soil available Cd content increased by 6.45% to 32.26% in S+K2L and S+K2M treatments, but decreased with the increase of KH2PO4 addition. Compared with S treatment, the content of available Cu, Zn and Mn in soil increased by 7.83% to 11.98%, 0.54% to 6.17% and 49.13% to 63.83%, respectively, when different doses of KNO3 were added in sepiolite immobilization treatment. Adding different doses of KH2PO4 could increase the contents of available Cu, Zn and Mn in soil by 8.99% to 12.44%, 25.20% to 31.37%, and 86.65% to 94.58%, respectively. Compared with S treatment, S+K1 treatment significantly increased the cadmium content in rape shoot, with an increased rate of 31.79% to 43.16% (P<0.05), but there was no significant difference between S+K2 and S treatment. In addition, under the immobilization remediation of sepiolite, the addition of two types of potassium fertilizers also had a significant impact on Cu and Zn content in rape shoots. The research results can provide important references for scientific application of potassium fertilizer in the safe utilization of Cd-polluted farmland.
  • [1]
    李剑睿,徐应明,林大松,等. 农田重金属污染原位钝化修复研究进展[J]. 生态环境学报,2014,23(4):721-728.
    [2]
    毛欣宇,翟森茂,姜小三,等. 不同改性生物炭对农田土壤理化性质及铅、镉钝化的影响机制研究[J]. 环境工程,2023,41(2):113-121

    ,139.
    [3]
    GUO G, ZHOU Q, MA L Q. Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review[J]. Environmental Monitoring and Assessment, 2006, 116(3):513-528.
    [4]
    LIANG X F, HAN J, XU Y M, et al. In situ field-scale remediation of Cd polluted paddy soil using sepiolite and palygorskite[J]. Geoderma, 2014, 235: 9-18.
    [5]
    CHEN D, YE X Z, ZHANG Q, et al. The effect of sepiolite application on rice Cd uptake:a two-year field study in Southern China[J]. Journal of Environmental Management, 2020, 254: 109788.
    [6]
    ZHU Y G, SHAW G, NISBET A F, et al. Effect of potassium supply on the uptake of 137Cs by spring wheat (Triticum aestivum, cv. Tonic): a lysimeter study[J]. Radiation Environmental. Biophysics, 2000, 39: 283-290.
    [7]
    ZHAO Z Q, ZHU Y G, LI H Y, et al. Effects of forms and rates of potassium fertilizers on cadmium uptake by two cultivars of spring wheat (Triticum aestivum. L)[J]. Environment International, 2004, 29(7): 973-978.
    [8]
    邹嘉成,牛莹新,宋付朋,等. 钾肥强化植物间作修复镉锌污染土壤效应研究[J]. 农业环境科学学报,2022,41(2):304-312.
    [9]
    衣纯真,傅桂平,张福锁,等.不同钾肥对水稻镉吸收和运移的影响[J].中国农业大学学报,1996,1(3): 65-70.
    [10]
    黄荣, 徐应明, 黄青青, 等. 二种钾肥对海泡石钝化修复镉污染土壤效应影响的研究[J]. 中国生态农业学报,2018,26(8): 1249-1256.
    [11]
    肖振林,王果,黄瑞卿,等. 酸性土壤中有效态镉提取方法研究[J]. 农业环境科学学报,2008,27(2):795-800.
    [12]
    OKAZAKI M, KIMURA S D, KIKUCHI T, et al. Suppressive effects of magnesium oxide materials on cadmium uptake and accumulation into rice grains Ⅰ: characteristics of magnesium oxide materials for cadmium sorption[J]. Journal of Hazardous Materials, 2008, 154(1): 294-299.
    [13]
    SUN Y B, XU Y, XU Y M et al. Reliability and stability of immobilization remediation of Cd polluted soils using sepiolite under pot and field trials[J]. Environmental Pollution, 2016, 208: 739-746.
    [14]
    王林,徐应明,孙扬,等. 海泡石及其复配材料钝化修复镉污染土壤[J]. 环境工程学报,2010,4(9):2093-2098.
    [15]
    李翔,杨驰浩,刘晔,等. 钝化剂对农田土壤Cd有效性及不同 水稻品种吸收Cd的研究[J]. 环境工程,2021,39(9):211-216.
    [16]
    王磊,安志装,李虎群,等. 不同钾肥对辣椒品质及镉吸收累积的影响[J]. 山东农业大学学报(自然科学版),2021,52(3):371-376.
    [17]
    蒋田雨,姜军,徐仁扣,等. 稻草生物质炭对3种可变电荷土壤吸附Cd(Ⅱ)的影响[J]. 农业环境科学学报,2012,31(6):1111-1117.
    [18]
    徐仁扣,肖双成,赵安珍. 基于Zeta电位的水稻土吸附Pb(Ⅱ)和Cd(Ⅱ)能力的比较[J]. 环境化学,2008,27(6):742-745.
    [19]
    YIN X L, XU Y M, HUANG R, et al. Remediation mechanisms for Cd-contaminated soil using natural sepiolite at the field scale[J]. Environmental Science: Processes and Impacts, 2017, 19(12): 1563-1570.
    [20]
    姜军,徐仁扣. 离子强度对三种可变电荷土壤表面电荷和Zeta电位的影响[J]. 土壤,2015,47(2):422-426.
    [21]
    王碧玲,谢正苗. 磷对铅、锌和镉在土壤固相-液相-植物系统中迁移转化的影响[J]. 环境科学,2008,29(11):3225-3229.
    [22]
    ZWONITZER J C, PIERZYNSKI G M, HETTIARACHCHI G M.Effects of phosphorus additions on lead, cadmium, and zinc bioavailabilities in a metal contaminated soil[J]. Water Air and Soil Pollution, 2003, 143: 193-209.
    [23]
    ZHAO Z Q, ZHU Y G, LI H Y, et al. Effects of forms and rates of potassium fertilizers on cadmium uptake by two cultivars of spring wheat(Triticum aestivum L.)[J]. Environment International, 2003, 29: 973-978.
    [24]
    叶芳芳,崔振岭,陈新平,等. 枸溶性钾肥对铅镉污染土壤芹菜生长及铅镉吸收的影响[J]. 中国农学通报,2015,31(26):133-138.
    [25]
    王小晶,陈怡,王菲,等. 钾肥对镉污染土壤大白菜品质的效应研究[J]. 农业资源与环境学报,2015,32(1):40-47.
    [26]
    KIM C G, BELL J N B, POWER S A. Effects of soil cadmium on Pinus sylvestris L. seedlings[J]. Plant and Soil, 2003, 257(2):443-449.
    [27]
    FLOGEAC K, GUOLLON E, APLINCOURT M. Surface complexation of copper(Ⅱ) on soil particles: EPR and XAFS studies[J]. Environmental Science Technology, 2004, 38: 3098-3103.
  • Relative Articles

    [1]LIU Yuxin, ZENG Lingwu, FANG Zheng, SUN Dezhi. COMPREHENSIVE PERFORMANCE EVALUATION OF URBAN WASTEWATER TREATMENT PLANTS IN THE UPPER AND MIDDLE REACHES OF THE YELLOW RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 34-42. doi: 10.13205/j.hjgc.202412005
    [2]LIU Yueting, ZHANG Qiang, JIANG Xiaohui, JI Yajun, YUAN Xiaohong, XIE Wenhao, ZHENG Lielong, LUO Jiaxin. SPATIAL-TEMPORAL CHARACTERISTICS OF CARBON EMISSIONS IN URBAN SEWAGE SYSTEM IN XI’AN AND ITS DOMINANT DRIVING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 40-49. doi: 10.13205/j.hjgc.202411005
    [3]WU Yulun, LI Zemin, CHENG Xiaoqian, QIU Guanglei, WEI Chaohai. PREDICTION OF NITROGEN REMOVAL PERFORMANCE AND IDENTIFICATION OF KEY PARAMETERS OF PARTIAL NITRIFICATION/PARTIAL DENITRIFICATION-ANAMMOX PROCESS BASED ON MACHINE LEARNING[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 180-190. doi: 10.13205/j.hjgc.202409017
    [4]CHU Yangyang, LI Hui, ZHU Yanping, HAN Xiaomeng, SHU Shihu. A REVIEW OF RESEARCH PROGRESS OF PREDICTION MODELS FOR DISINFECTION BY-PRODUCTS: EMPIRICAL MODELS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 38-48. doi: 10.13205/j.hjgc.202407004
    [5]WU Qixian, XIE Xinyan, CHEN Yun, JIN Ziyi. ANALYSIS OF FACTORS INFLUENCING CARBON EMISSIONS OF URBAN RAIL TRANSIT PROJECTS BASED ON PARTIAL LEAST SQUARES STRUCTURAL EQUATION MODELING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 133-140. doi: 10.13205/j.hjgc.202310017
    [6]WANG Zhiqiang, LI Kehui, REN Jin'ge, ZHANG Qi. INFLUENTIAL FACTORS AND SCENARIO FORECAST OF CARBON EMISSIONS OF CONSTRUCTION INDUSTRY IN SHANDONG PROVINCE BASED ON LMDI-SD MODEL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 108-116. doi: 10.13205/j.hjgc.202310014
    [7]QIU Dezhi, CHEN Chun, GUO Li, LIU Dan, MA Jiahui, LEI Miao, LI Tianning, XU Keke, YAN Xu. CHARACTERISTICS OF GREENHOUSE GAS EMISSIONS FROM MUNICIPAL WASTEWATER TREATMENT PLANTS IN MAJOR URAN GROUPS OF CHINA BASED ON EMISSION FACTOR METHOD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 116-122. doi: 10.13205/j.hjgc.202206015
    [8]XUE Zhaoxia, FENG Qian, FANG Fang, LUO Jingyang, CAO Jiashun, XU Runze. EMISSION CHARACTERISTICS AND MECHANISMS OF METHANE IN MUNICIPAL SEWER SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 123-129,193. doi: 10.13205/j.hjgc.202206016
    [9]XU Runze, CAO Jiashun, FANG Fang. RESEARCH PROGRESS ON N2O RECYCLING AND DATA-DRIVEN MODELING IN WASTEWATER TREATMENT PROCESSES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 107-115. doi: 10.13205/j.hjgc.202206014
    [10]DONG Hao, SUN Lin, OUYANG Feng. PREDICTION OF PM2.5 CONCENTRATION BASED ON INFORMER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 48-54,62. doi: 10.13205/j.hjgc.202206006
    [11]HU Xiangang, LI Jiawei, LI Jiaqiang, JIN Hongye, YU Fubo. SCIENTIFIC QUESTIONS ON THE BIOLOGICAL EFFECTS OF NANOMATERIALS BASED ON MACHINE LEARNING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 171-181. doi: 10.13205/j.hjgc.202206022
    [12]LIU Yanbiao, QIAO Jianzhi, YOU Shijie. RESEARCH PROGRESS ON APPLICATIONS OF MACHINE LEARNING IN CARBON-BASED ENVIRONMENTAL FUNCTIONAL MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 182-187. doi: 10.13205/j.hjgc.202206023
    [13]HU Song, LIU Guohong, HE Ying, YAN Jiachen, CHEN Hanle, YAN Xiliang, YAN Bing. PREDICTION ON PHOTOELECTRIC CONVERSION EFFICIENCY OF ORGANIC PHOTOVOLTAIC MATERIALS USING END-TO-END DEEP LEARNING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 188-193. doi: 10.13205/j.hjgc.202206024
    [14]RUI Dongni, MA Yanyan, YE Lin. APPLICATION OF MACHINE LEARNING METHODS IN WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 145-153. doi: 10.13205/j.hjgc.202206019
    [15]XU Wenjun, HUANG Dandan, LIANG Mingshen, XU Qiyong. EFFECT OF HYDROGEN SUFIDE ON METHANE OXIDATION OF BIOCHAR-AMENDED LANDFILL COVER SOIL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 120-126. doi: 10.13205/j.hjgc.202202019
    [16]HE Zhe-xiang, LI Lei. AN AIR POLLUTANT CONCENTRATION PREDICTION MODEL BASED ON WAVELET TRANSFORM AND LSTM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 111-119. doi: 10.13205/j.hjgc.202103016
    [17]LI Zhi-sheng, LIANG Xi-guan, JIN Yu-kai, ZHANG Hua-gang, OU Yao-chun. A COMPARATIVE STUDY ON EDICTIVE EFFECT OF PM2.5 IN BEIJING BASED ON TREE MODELS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 106-113. doi: 10.13205/j.hjgc.202106016
    [18]HUANG Chun-tao, FAN Dong-ping, LU Ji-fu, LIAO Qi-feng. PREDICTION OF PM2.5 AND PM10 CONCENTRATION IN GUANGZHOU BASED ON DEEP LEARNING MODEL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 135-140. doi: 10.13205/j.hjgc.202112020
    [19]WU Fan, NIU Dong-jie. REVIEW ON PREDICTIVE MODELS FOR MUNICIPAL SOLID WASTE PRODUCTION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 128-133. doi: 10.13205/j.hjgc.202104020
    [20]LOU Dai, ZHANG Guang-zhi, REN Fu-min, XI Cheng-gang. ESTABLISHMENT OF QUANTITATIVE PREDICTION MODEL BASED ON CHARACTERISTICS OF WASTE GENERATED IN UNDERGROUND PIPELINE GALLERY CONSTRUCTION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 9-14,38. doi: 10.13205/j.hjgc.202003002
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.9 %FULLTEXT: 15.9 %META: 83.0 %META: 83.0 %PDF: 1.1 %PDF: 1.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 26.2 %其他: 26.2 %其他: 1.1 %其他: 1.1 %三明: 0.4 %三明: 0.4 %上海: 1.8 %上海: 1.8 %东莞: 0.7 %东莞: 0.7 %保定: 0.7 %保定: 0.7 %北京: 4.8 %北京: 4.8 %南京: 2.2 %南京: 2.2 %南通: 0.4 %南通: 0.4 %台北: 1.1 %台北: 1.1 %台州: 1.1 %台州: 1.1 %哈尔滨: 1.1 %哈尔滨: 1.1 %大同: 0.7 %大同: 0.7 %天津: 2.2 %天津: 2.2 %宜春: 1.1 %宜春: 1.1 %宣城: 0.4 %宣城: 0.4 %常州: 0.4 %常州: 0.4 %常德: 0.4 %常德: 0.4 %广州: 0.7 %广州: 0.7 %张家口: 0.4 %张家口: 0.4 %徐州: 0.7 %徐州: 0.7 %成都: 5.2 %成都: 5.2 %新乡: 3.3 %新乡: 3.3 %无锡: 1.5 %无锡: 1.5 %昆明: 0.7 %昆明: 0.7 %晋城: 0.4 %晋城: 0.4 %杭州: 4.1 %杭州: 4.1 %桂林: 0.7 %桂林: 0.7 %榆林: 0.4 %榆林: 0.4 %武汉: 1.5 %武汉: 1.5 %深圳: 0.4 %深圳: 0.4 %温州: 0.4 %温州: 0.4 %湖州: 2.2 %湖州: 2.2 %漯河: 1.1 %漯河: 1.1 %烟台: 0.4 %烟台: 0.4 %盐城: 0.4 %盐城: 0.4 %石家庄: 1.1 %石家庄: 1.1 %福州: 0.4 %福州: 0.4 %秦皇岛: 0.4 %秦皇岛: 0.4 %芒廷维尤: 9.2 %芒廷维尤: 9.2 %芝加哥: 2.2 %芝加哥: 2.2 %苏州: 1.5 %苏州: 1.5 %衢州: 0.7 %衢州: 0.7 %西宁: 3.7 %西宁: 3.7 %西安: 0.7 %西安: 0.7 %贵阳: 0.4 %贵阳: 0.4 %运城: 1.5 %运城: 1.5 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.7 %邯郸: 0.7 %郑州: 1.1 %郑州: 1.1 %重庆: 1.5 %重庆: 1.5 %长沙: 0.4 %长沙: 0.4 %青岛: 0.4 %青岛: 0.4 %马鞍山: 0.4 %马鞍山: 0.4 %龙岩: 2.2 %龙岩: 2.2 %其他其他三明上海东莞保定北京南京南通台北台州哈尔滨大同天津宜春宣城常州常德广州张家口徐州成都新乡无锡昆明晋城杭州桂林榆林武汉深圳温州湖州漯河烟台盐城石家庄福州秦皇岛芒廷维尤芝加哥苏州衢州西宁西安贵阳运城遵义邯郸郑州重庆长沙青岛马鞍山龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (53) PDF downloads(0) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return