Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
CHEN Jian. KEY POINTS AND CASE STUDY OF MUNICIPAL SEWER NETWORK INTERCONNECTION PLANNING AND DESIGN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 125-131. doi: 10.13205/j.hjgc.202404015
Citation: HU Hongying, XIA Jun, CHEN Zhuo, LI Jun, WANG Yuming, CAI Hanying, ZHOU Qiaohong, WANG Bin, XUE Ying. Ethical issues and countermeasures regarding emerging contaminants in water environment[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 1-11. doi: 10.13205/j.hjgc.202501001

Ethical issues and countermeasures regarding emerging contaminants in water environment

doi: 10.13205/j.hjgc.202501001
  • Received Date: 2024-09-27
  • Accepted Date: 2024-11-21
  • Rev Recd Date: 2024-10-31
  • Available Online: 2025-03-21
  • Publish Date: 2025-03-21
  • With the increasing scale and widespread utilization of chemicals, emerging contaminants such as persistent organic pollutants (POPs), endocrine-disrupting chemicals (EDCs), antibiotics, and microplastics have been detected extensively in aquatic environments, presenting significant and complex challenges to the safety of aquatic ecosystems and human health. This paper provides a systematic and detailed introduction to the concept, sources, and classifications of emerging contaminants, offering readers a comprehensive understanding of their nature. It also summarizes the harmful effects and the current control technologies available, while analyzing the core environmental ethical issues associated with these pollutants. Using bisphenol A (BPA) as a representative example, this study delved deeply into the environmental ethical dilemmas associated with the utilization, treatment, and disposal of such contaminants. Specifically, it examined issues concerning natural rights, environmental equity, and intergenerational justice, which are intricately linked to the broader governance and management of emerging contaminants. Moreover, the paper proposed actionable countermeasures and constructive recommendations aimed at tackling the ethical challenges associated with emerging pollutants in aquatic environments, emphasizing both theoretical insights and practical approaches. In the future, there is an urgent necessity to further enhance research and exploration into innovative control methods and comprehensive policy measures for emerging contaminants. This requires an integrated focus on both technological advancements and managerial innovations, ultimately providing robust theoretical support and practical solutions for strengthening ethical governance in water environmental protection. These efforts will contribute significantly to ensuring the sustainable safety and resilience of water resources in China.
  • [1]
    BLETSOU A A, JEON J, HOLLENDER J, et al. Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment[J]. TrAC Trends in Analytical Chemistry, 2015, 66:32-44.
    [2]
    都仲秋. 系统观视阈下新污染物治理的法治障碍与改善路径[J]. 华北电力大学学报, 2024, 5(1): 43-54.

    DO Z Q. Law barriers to systematic governance of new pollutants in China and the path to improvement[J]. Journal of North China Electric Power University, 2024, 5(1): 43-54.
    [3]
    中华人民共和国国务院办公厅. 国务院办公厅关于印发新污染物治理行动方案的通知[R]. 中华人民共和国国务院公报, 2022, 16: 34-39. General Office of the State Council of the People’s Republic of China. The General Office of the State Council Issued an Action Plan on Further Controlling New Pollutants[R]. Gazette of the State Council of the People’s Republic of China, 2022

    , 16: 34-39.
    [4]
    赵淑莉, 陈少坤, 于秀豪, 等. 美丽中国建设过程中重点关注的新污染物监测研究[J]. 中国环境科学, 2024, 44(8): 4576-4587.

    ZHAO S L, CHEN S K, YU X H, et al. Study on monitoring widespread concerned emerging contaminants under the construction of the Beautiful China[J]. China Environmental Science, 2024, 44(8): 4576-4587.
    [5]
    夏军, 鲁晓, 朱彤, 等. 环境伦理研究和实践面对的机遇与挑战[J]. 中国科学:地球科学, 2024, 54(9): 2783-2788.

    XIA J, LU X, ZHU T, et al. Opportunities and challenges in environmental ethics research and practice[J]. Scientia Sinica Terrae, 2024, 54(9): 2783-2788.
    [6]
    WANG B, YU G. Emerging contaminant control: from science to action[J]. Frontiers of Environmental Science Engineering in Life Sciences, 2022, 16(6): 81.
    [7]
    WANG B, SUI Q, LIU H, et al. Promoting environmental risk assessment and control of emerging contaminants in China[J]. Engineering, 2024, 37:13-17.
    [8]
    LAPWORTH D, BARAN N, STUART M, et al. Emerging organic contaminants in groundwater: a review of sources, fate and occurrence[J]. Environmental pollution, 2012, 163:287-303.
    [9]
    WILKINSON J, HOODA P S, BARKER J, et al. Occurrence, fate and transformation of emerging contaminants in water: an overarching review of the field[J]. Environmental Pollution, 2017, 231:954-70.
    [10]
    KHAN S, NAUSHAD M, GOVARTHANAN M, et al. Emerging contaminants of high concern for the environment: current trends and future research[J]. Environmental Research, 2022, 207:112609.
    [11]
    SINGH J, YADAV P, PAL A K, et al. Sensors in Water Pollutants Monitoring: Role of Material[M]. Singapore: Springer Singapore, 2020.
    [12]
    BENNY S M, GUPTA S D, ISMAIL S P, et al. Handbook of Water Pollution[M]. New York: John Wiley and Sons, Inc., 2024.
    [13]
    BETHANIS J, GOLIA E E. Micro-and nano-plastics in agricultural soils: a critical meta-analysis of their impact on plant growth, nutrition, metal accumulation in plant tissues and crop yield[J]. Applied Soil Ecology, 2024, 194:105202.
    [14]
    GOMES I B, SIMÕES L C, SIMÕES M. The effects of emerging environmental contaminants on Stenotrophomonas maltophilia isolated from drinking water in planktonic and sessile states[J]. Science of the Total Environment, 2018, 643:1348-1356.
    [15]
    VASILACHI I C, ASIMINICESEI D M, FERTU D I, et al. Occurrence and fate of emerging pollutants in water environment and options for their removal[J]. Water, 2021, 13(2): 181.
    [16]
    METHNENI N, MORALES-GONZÁLEZ J A, JAZIRI A, et al. Persistent organic and inorganic pollutants in the effluents from the textile dyeing industries: ecotoxicology appraisal via a battery of biotests[J]. Environmental Research, 2021, 196:110956.
    [17]
    HUANG Y, YOU Y, WU M, et al. Chemical characterization and source attribution of organic pollutants in industrial wastewaters from a Chinese chemical industrial park[J]. Environmental Research, 2023, 229:115980.
    [18]
    GKIKA D A, TOLKOU A K, EVGENIDOU E, et al. Fate and removal of microplastics from industrial wastewaters[J]. Sustainability, 2023, 15(8): 6969.
    [19]
    UWAMAHORO C, JO J H, JANG S I, et al. Assessing the risks of pesticide exposure: implications for endocrine disruption and male fertility[J]. International Journal of Molecular Sciences, 2024, 25(13): 6945.
    [20]
    MIRANDA R A, SILVA B S, DE MOURA E G, et al. Pesticides as endocrine disruptors: programming for obesity and diabetes[J]. Endocrine, 2023, 79(3): 437-447.
    [21]
    YUAN X, LV Z, ZHANG Z, et al. A review of antibiotics, antibiotic resistant bacteria, and resistance genes in aquaculture: occurrence, contamination, and transmission[J]. Toxics, 2023, 11(5): 420.
    [22]
    ADENAYA A, BERGER M, BRINKHOFF T, et al. Usage of antibiotics in aquaculture and the impact on coastal waters[J]. Marine Pollution Bulletin, 2023, 188: 114645.
    [23]
    CHANG D, MAO Y, QIU W, et al. The source and distribution of tetracycline antibiotics in China: a review[J]. Toxics, 2023, 11(3): 214.
    [24]
    CHAABAN T, EZZEDDINE Z, GHSSEIN G. Antibiotic Misuse during the COVID-19 Pandemic in Lebanon: a cross-sectional study[J]. COVID, 2024, 4(7): 921-929.
    [25]
    WIDOWATI I, BUDAYANTI N N S, JANURAGA P P, et al. Self-medication and self-treatment with short-term antibiotics in Asian countries: a literature review[J]. Pharm Educ, 2021, 21(2): 152-162.
    [26]
    BHAT M A. A comprehensive characterization of indoor ambient microplastics in households during the COVID-19 pandemic[J]. Air Quality, Atmosphere Health, 2024: 1-17.
    [27]
    JESSIELEENA A, RATHINAVELU S, VELMAIEL K E, et al. Residential houses: a major point source of microplastic pollution: insights on the various sources, their transport, transformation, and toxicity behaviour[J]. Environmental Science Pollution Research, 2023, 30(26): 67919-67940.
    [28]
    LUTTERBECK C A, COLARES G S, DELL’OSBEL N, et al. Hospital laundry wastewaters: a review on treatment alternatives, life cycle assessment and prognosis scenarios[J]. Journal of Cleaner Production, 2020, 273:122851.
    [29]
    FATIMAZAHRA S, LATIFA M, LAILA S, et al. Review of hospital effluents: special emphasis on characterization, impact, and treatment of pollutants and antibiotic resistance[J]. Environmental Monitoring Assessment, 2023, 195(3): 393.
    [30]
    LIU K, GAN C, GAN Y, et al. Occurrence and source identification of antibiotics and antibiotic resistance genes in groundwater surrounding urban hospitals[J]. Journal of Hazardous Materials, 2024, 465: 133368.
    [31]
    NASRABADI A E, RAMAVANDI B, BONYADI Z, et al. Landfill leachates as a significant source for emerging pollutants of phthalic acid esters: identification, occurrence, characteristics, fate, and transport[J]. Chemosphere, 2024, 356:141873.
    [32]
    PODLASEK A, VAVERKOVÁ M D, JAKIMIUK A, et al. A comprehensive investigation of geoenvironmental pollution and health effects from municipal solid waste landfills[J]. Environmental Geochemistry, 2024, 46(3): 97.
    [33]
    JAAFARZADEH N, TALEPOUR N. Microplastics as carriers of antibiotic resistance genes and pathogens in municipal solid waste (MSW) landfill leachate and soil: a review[J]. Journal of Environmental Health Science Engineering, 2024, 22(1): 1-12.
    [34]
    PRATIWI O A, ACHMADI U F, KURNIAWAN R. Microplastic pollution in landfill soil: emerging threats the environmental and public health[J]. Environmental Analysis, Health Toxicology reports, 2024, 39(1):e2024009-e2024000.
    [35]
    WAN D, WANG H, POZDNYAKOV I P, et al. Formation and enhanced photodegradation of chlorinated derivatives of bisphenol A in wastewater treatment plant effluent[J]. Water Research, 2020, 184:116002.
    [36]
    KODEŠOVÁ R, ŠVECOVÁ H, KLEMENT A, et al. Contamination of water, soil, and plants by micropollutants from reclaimed wastewater and sludge from a wastewater treatment plant[J]. Science of the Total Environment, 2024, 907:167965.
    [37]
    WANG B, XU Z, DONG B J J O H M. Occurrence, fate, and ecological risk of antibiotics in wastewater treatment plants in China: a review[J]. Journal of Hazardous Materials, 2024, 469:133925.
    [38]
    LIU J, YANG F, CAI Y, et al. Unveiling the existence and ecological hazards of trace organic pollutants in wastewater treatment plant effluents across China[J]. Eco-Environment Health, 2024, 3(1): 21-29.
    [39]
    AKHTAR A B T, NASEEM S, YASAR A, et al. Persistent organic pollutants (POPs): sources, types, impacts, and their remediation[J]. Environmental Pollution Remediation, 2021: 213-246.
    [40]
    SAID T O, EL ZOKM G M. Classifications, sources, and significant features of POPs in aquatic environment with special reference to dirty dozen[M]//Persistent Organic Pollutants in Aquatic Systems: Classification, Toxicity, Remediation and Future. Springer. 2024: 1-26.
    [41]
    KAHN L G, PHILIPPAT C, NAKAYAMA S F, et al. Endocrine-disrupting chemicals: implications for human health[J]. The Lancet Diabetes Endocrinology, 2020, 8(8): 703-718.
    [42]
    DIAMANTI-KANDARAKIS E, BOURGUIGNON J P, GIUDICE L C, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement[J]. Endocrine Reviews, 2009, 30(4): 293-342.
    [43]
    CANO R, PÉREZ J L, DÁVILA L A, et al. Role of endocrine-disrupting chemicals in the pathogenesis of non-alcoholic fatty liver disease: a comprehensive review[J]. International Journal of Molecular Sciences, 2021, 22(9): 4807.
    [44]
    MONNERET C. What is an endocrine disruptor?[J]. Comptes Rendus Biologies, 2017, 340(9/10): 403-405.
    [45]
    PANCU D F, SCURTU A, MACASOI I G, et al. Antibiotics: conventional therapy and natural compounds with antibacterial activity: a pharmaco-toxicological screening[J]. Antibiotics, 2021, 10(4): 401.
    [46]
    AMARASIRI M, SANO D, SUZUKI S. Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: current knowledge and questions to be answered[J]. Critical Reviews in Environmental Science Technology, 2020, 50(19): 2016-2059.
    [47]
    HALE R C, SEELEY M E, LA GUARDIA M J, et al. A global perspective on microplastics[J]. Journal of Geophysical Research: Oceans, 2020, 125(1): e2018JC014719.
    [48]
    COLE M, LINDEQUE P, HALSBAND C, et al. Microplastics as contaminants in the marine environment: a review[J]. Marine Pollution Bulletin, 2011, 62(12): 2588-2597.
    [49]
    李孟琴. 中国持久性有机污染物和新型污染物的环境行为研究[J]. 热带农业工程, 2023, 47(3): 153-155.

    LI M Q. Research on the environmental behavior of organic pollutants and new pollutants of persistence in China[J]. Tropical Agricultural Engineering, 2023, 47(3): 153-155.
    [50]
    雒建伟, 高良敏, 陈一佳, 等. 持久性有机污染物(POPs)的环境问题及其治理措施研究进展[J]. 环保科技, 2016, 22(6): 51-55

    ,60. LUO J W, GAO L M, CHEN Y J, et al. Research progress on the environmental problems and treatment measures of persistent organic pollutants[J]. Environmental Technology, 2016, 22(6): 51-55, 60.
    [51]
    PATRIARCA C, SEDANO-NU'ÑEZ V T, GARCIA S L, et al. Character and environmental liability of cyanobacteria-derived dissolved organic matter[J]. Limnology Oceanography, 2021, 66(2): 496-509.
    [52]
    LU S, BUEKENS A, CHEN T, et al. Dioxins and dioxin-like compounds[J]. Handbook on Characterization of Biomass, Biowaste Related By-products, 2020, 1211-1265.
    [53]
    LIU L, QU Y, HUANG J, et al. Per-and polyfluoroalkyl substances (PFASs) in Chinese drinking water: risk assessment and geographical distribution[J]. Environmental Sciences Europe, 2021, 33: 1-12.
    [54]
    GRANDJEAN P, CLAPP R. Perfluorinated alkyl substances: emerging insights into health risks[J]. New Solutions: A Journal of Environmental Occupational Health Policy, 2015, 25(2): 147-63.
    [55]
    刘宝印, 荀斌, 黄宝荣, 等. 我国水环境中新污染物空间分布特征分析[J]. 环境保护, 2021, 49(10): 25-30.

    LIU B Y, XUN B, HUANG B R, et al. Spatial differentiation characteristics of new pollutants in China’s water environment[J]. Environmental Protection, 2021, 49(10): 25-30.
    [56]
    张翠. 海藻及其生物基材料对典型环境内分泌干扰物的去除作用与影响机制研究[D]. 烟台:中国科学院大学, 2019. ZHANG C. Removal and Influential Mechanisms of Typical Endocrine Disrupting Chemicals by Algae and Algal-Based Materials[D]. Yantai: University of Chinese Academy of Sciences, 2019.
    [57]
    JACKSON L, KLERKS P. Effects of the synthetic estrogen 17α-ethinylestradiol on Heterandria formosa populations: does matrotrophy circumvent population collapse?[J]. Aquatic Toxicology, 2020, 229: 105659.
    [58]
    KINCH C D, IBHAZEHIEBO K, JEONG J-H, et al. Low-dose exposure to bisphenol A and replacement bisphenol S induces precocious hypothalamic neurogenesis in embryonic zebrafish[J]. Proceedings of the National Academy of Sciences, 2015, 112(5): 1475-1480.
    [59]
    YANG M, QIU J, ZHAO X, et al. 6-benzylaminopurine exposure induced development toxicity and behaviour alteration in zebrafish (Danio rerio)[J]. Environmental Pollution, 2021, 278: 116887.
    [60]
    RIVAS CHEN F, CHEFETZ B, THOMPSON M L, 0047-2425[R]: Wiley Online Library, 2021.
    [61]
    ASHBOLT N J, AMÉZQUITA A, BACKHAUS T, et al. Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance[J]. Environmental Health Perspectives, 2013, 121(9): 993-1001.
    [62]
    LI W C. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil[J]. Environmental Pollution, 2014, 187: 193-201.
    [63]
    CARVALHO I T, SANTOS L. Antibiotics in the aquatic environments: a review of the European scenario[J]. Environment International, 2016, 94:736-57.
    [64]
    徐永刚, 宇万太, 马强, 等. 环境中抗生素及其生态毒性效应研究进展[J]. 生态毒理学报, 2015, 10(3): 11-27.

    XU Y G, YU W T, MA Q, et al. The antibiotic in environment and its ecotoxicity: a review[J]. Asian Journal of Ecotoxicology, 2015, 10(3): 11-27.
    [65]
    胡莹莹 王菊英, 马德毅. 近岸养殖区抗生素的海洋环境效应研究进展[J]. 海洋环境科学, 2004, 4(4): 76-80.

    HU Y Y, WANG J Y, MA D Y. Research progress on environmental effect of antibiotic agents in marine aquaculture[J]. Marine Environmental Science, 2004, 4(4): 76-80.
    [66]
    王兰. 抗生素污染现状及对环境微生态的影响[J]. 药物生物技术, 2006, 2(2): 144-148.

    WANG L. The Current situation of antibiotics pollution and the effect on environmental microcosm[J]. Pharmaceutical Biotechnology, 2006, 2(2): 144-148.
    [67]
    AHMED R, HAMID A K, KREBSBACH S A, et al. Critical review of microplastics removal from the environment[J]. Chemosphere, 2022, 293: 133557.
    [68]
    BOUWMEESTER H, HOLLMAN P C, PETERS R J. Potential health impact of environmentally released micro-and nanoplastics in the human food production chain: experiences from nanotoxicology[J]. Environmental Science Technology, 2015, 49(15): 8932-8947.
    [69]
    ZHAN Z, WANG J, PENG J, et al. Sorption of 3, 3', 4, 4'-tetrachlorobiphenyl by microplastics: a case study of polypropylene[J]. Marine Pollution Bulletin, 2016, 110(1): 559-563.
    [70]
    SCOPETANI C, CINCINELLI A, MARTELLINI T, et al. Ingested microplastic as a two-way transporter for PBDEs in Talitrus saltator[J]. Environmental Research, 2018, 167: 411-417.
    [71]
    VON MOOS N, BURKHARDT-HOLM P, KÖHLER A. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure[J]. Environmental Science Technology, 2012, 46(20): 11327-11335.
    [72]
    SOLLEIRO-VILLAVICENCIO H, GOMEZ-DE LEÓN C T, DEL RÍO-ARAIZA V H, et al. The detrimental effect of microplastics on critical periods of development in the neuroendocrine system[J]. Birth Defects Research, 2020, 112(17): 1326-1340.
    [73]
    陈启晴, 杨守业, HOLLERT H, 等. 微塑料污染的水生生态毒性与载体作用[J]. 生态毒理学报, 2018, 13(1): 16-30.

    CHEN Q Q, YANG S Y, HOLLERT H, et al. The ecotoxicity and carrier function of microplastics in the aquatic environment[J]. Asian Journal of Ecotoxicology, 2018, 13(1): 16-30.
    [74]
    SANCHEZ W, BENDER C, PORCHER J M. Wild gudgeons (Gobio gobio) from French rivers are contaminated by microplastics: preliminary study and first evidence[J]. Environmental Research, 2014, 128: 98-100.
    [75]
    LU Y, ZHANG Y, DENG Y, et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver[J]. Environmental Science Technology, 2016, 50(7): 4054-4060.
    [76]
    黄显雷. 新污染物的危害与治理[J]. 生态经济, 2023, 39(8): 5-8.

    HUANG X L. Hazards and management of emerging contaminants[J]. Ecological Economy, 2023, 39(8): 5-8.
    [77]
    ARTHAM T, DOBLE M. Bisphenol A and metabolites released by biodegradation of polycarbonate in seawater[J]. Environmental Chemistry Letters, 2012, 10(1): 29-34.
    [78]
    CONGWEN L, YUNLIN W, SHENTING Z, et al. Advanced methods to analyze steroid estrogens in environmental samples[J]. Environmental Chemistry Letters, 2020, 18(3): 543-559.
    [79]
    VIEIRA W T, DE FARIAS M B, SPAOLONZI M P, et al. Removal of endocrine disruptors in waters by adsorption, membrane filtration and biodegradation: a review[J]. Environmental Chemistry Letters, 2020, 18(4): 1113-1143.
    [80]
    MAO J, HONG W, LI Q, et al. The application strategies and progresses of silicon-based minerals in advanced oxidation processes for water decontamination[J]. Coordination Chemistry Reviews, 2024, 511: 215871.
    [81]
    DU X, YANG W, ZHAO J, et al. Peroxymonosulfate-assisted electrolytic oxidation/coagulation combined with ceramic ultrafiltration for surface water treatment: membrane fouling and sulfamethazine degradation[J]. Journal of Cleaner Production, 2019, 235: 779-88.
    [82]
    AHMADI M, MOTLAGH H R, JAAFARZADEH N, et al. Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite[J]. Journal of Environmental Management, 2017, 186(P1): 55-63.
    [83]
    PIMENTEL J A I, DONG C D, GARCIA-SEGURA S, et al. Degradation of tetracycline antibiotics by Fe2+-catalyzed percarbonate oxidation[J]. Science of the Total Environment, 2021, 781: 146411.
    [84]
    BUCHNER E M, HAPPEL O, SCHMIDT C K, et al. Approach for analytical characterization and toxicological assessment of ozonation products in drinking water on the example of acesulfame[J]. Water Research, 2019, 153: 357-368.
    [85]
    CHEN Y Y, MA Y L, YANG J, et al. Aqueous tetracycline degradation by H2O2 alone: removal and transformation pathway[J]. Chemical Engineering Journal, 2017, 307: 15-23.
    [86]
    MA X, WU T, ZHAO M, et al. Catalytic degradation of tetracycline by ATP@ Fe3O4 composite material activated persulfate[J]. Chinese Journal of Environmental Engineering, 2020, 14(9): 2463-2473.
    [87]
    RUIBIN Z, LUYING C, ZHUOXI P, et al. Removal effect and distribution characteristics of main pollutants in fluorine-containing water by aluminum sludge constructed wetland[J]. Chinese Journal of Environmental Engineering, 2022, 16(9): 2874-2882.
    [88]
    ALLAHKARAMI E, MONFARED A D. Activated carbon adsorbents for the removal of emerging pollutants and its adsorption mechanisms[M]//Sustainable Technologies for Remediation of Emerging Pollutants from Aqueous Environment, Elsevier, 2024: 79-109.
    [89]
    杨冠政. 环境伦理学概论[M]. 北京:清华大学出版社, 2013. YANG G Z. An Introduction to Environmental Ethics[M]. Beijing: Tsinghua University Press, 2013.
    [90]
    顾萍. 从水环境治理走向水伦理治理:水环境治理的伦理探析[J]. 自然辩证法研究, 2023, 39(2): 41-46.

    GU P. From water environment improvement to water ethics improvement: ethical analysis of water environment control[J]. Studies in Dialectics of Nature, 2023, 39(2): 41-46.
    [91]
    余谋昌, 雷毅, 杨通进. 环境伦理学[M]. 北京: 高等教育出版社, 2019. YU M C, LEI Y, YANG T J. Environmental Ethics[M]. Beijing: Higher Education Press, 2019.
    [92]
    余谋昌. 生态伦理学: 从理论走向实践[M]. 北京: 首都师范大学出版社, 1999. YU M C. Ecology Ethics: From Theory to Practice[M]. Beijing: Capital Normal University Press, 1999.
    [93]
    杨通进, 江娅, 郭辉. 环境伦理学基础[M]. 重庆:重庆出版社, 2007. YANG T J, JIANG Y, GUO H. Fundations of Environmental Ethics[M]. Chongqing: Chongqing Press, 2007.
    [94]
    ROCHESTER J R. Bisphenol A and human health: a review of the literature[J]. Reproductive Toxicology, 2013, 42: 132-55.
    [95]
    VOUTSA D H P S C, GIGER W. Benzotriazoles, alkylphenols, bisphenol A and musks in sewage sludge and their behavior in soils and plants[J]. Journal of Environmental Monitoring, 2006, 8(5): 509-516.
    [96]
    FORNER-PIQUER I, FAKRIADIS I, MYLONAS C C, et al. Effects of dietary bisphenol A on the reproductive function of gilthead sea bream (Sparus aurata) testes[J]. International Journal of Molecular Sciences, 2019, 20(20): 5003.
    [97]
    LI D K, ZHOU Z, MIAO M, et al. Urine bisphenol-A (BPA) level in relation to semen quality[J]. Fertility Sterility, 2011, 95(2): 625-630.
    [98]
    GRANT K, GOLDIZEN F C, SLY P D, et al. Health consequences of exposure to e-waste: a systematic review[J]. 2013, 1(6): 350-361.
  • Relative Articles

    [1]WANG Biyun, SUN Ailin, XU Xuehuang. STRATEGIES AND PROJECT CASE OF WASTEWATER TREATMENT PLANTS RENEWAL AND REFORMATION FOR THE DUAL-CARBON GOAL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 81-89. doi: 10.13205/j.hjgc.202411009
    [2]LI Danlin, GUO Shuai, HUANG Rongmin, ZHANG Hao, CHENG Haoke. RISK ASSESSMENT OF EXTRANEOUS WATER IN SEWAGE SYSTEMS BASED ON INTEGRATED MONITORING OF WATER SUPPLY AND DRAINAGE SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 39-45. doi: 10.13205/j.hjgc.202311006
    [3]RUI Dongni, MA Yanyan, YE Lin. APPLICATION OF MACHINE LEARNING METHODS IN WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 145-153. doi: 10.13205/j.hjgc.202206019
    [4]XU Yi, YANG Shi-hong, YOU Guo-xiang, HOU Jun. REVIEW OF ROLES OF EXTRACELLULAR POLYMERIC SUBSTANCES (EPS) IN MEDIATING THE STRUCTURE, FUNCTION AND SURFACE PROPERTIES OF MICROBIAL AGGREGATES IN WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 238-245,269. doi: 10.13205/j.hjgc.202209032
    [5]YANG Tingting, LI Meng, LI Zhiyi, GAO Xinghua, YANG Xiangyu, ZHAO Dongquan. APPLICATION OF SYSTEMATIC MONITORING SCHEME IN QUALITY AND EFFICIENCY IMPROVING OF SEWAGE TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 239-243,223. doi: 10.13205/j.hjgc.202212032
    [6]CHEN Weidong, WEN Donghui. ADVANCES IN SPATIAL-TEMPORAL DISTRIBUTION AND ASSEMBLY MECHANISMS OF MICROBIAL COMMUNITY IN WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 1-13,39. doi: 10.13205/j.hjgc.202208001
    [7]ZHANG Meng, ZHAO Yani, ZHANG Liling, WU Jingya, LI Shuping, ZHU Guangcan, SUN Liwei. COMPARISON OF CHARACTERISTICS OF MICROBIAL COMMUNITY STRUCTURE IN SEWAGE TREATMENT PLANTS OF HIGH ALTITUDE AREA AND LOW ALTITUDE AREA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 66-73. doi: 10.13205/j.hjgc.202203011
    [8]LV Long, ZHANG Yi-xiao, ZHANG Ying, MENG Fan-long, LI Chao, WANG Han. OPERATION EFFECT ANALYSIS OF NEW ADDED MEMBRANE CASSETTES IN A MBR MEMBRANE SYSTEM IN A WASTEWATER TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 162-166,144. doi: 10.13205/j.hjgc.202107022
    [9]ZHOU Yi-xin, LI Ji, WANG Yan, ZHENG Kai-kai, WANG Xiao-fei, ZHI Yao. REASON ANALYSIS AND IMPROVEMENT MEASURES FOR LOW POLLUTANTS CONCENTRATION OF INFLUENT WATER OF URBAN SEWAGE TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 25-30. doi: 10.13205/j.hjgc.202112004
    [10]LI Rui-cheng. ANALYSIS ON DESIGN CHARACTERISTICS OF A LARGE-SCALE SEMI-UNDERGROUND WASTEWATER TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 109-115. doi: 10.13205/j.hjgc.202007017
    [11]ZHENG Kai-kai, ZHOU Zhen, ZHOU Yuan, WANG Yan, ZHOU Jian-chun, LI Ji. A QUANTITIVE STUDY ON PROPORTION OF GROUNDWATER, RIVER WATER AND RAINWATER IN INFLUENT OF URBAN WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 75-80. doi: 10.13205/j.hjgc.202007012
  • Cited by

    Periodical cited type(7)

    1. 朱建伟,盛强,刘威,饶宾期. 污泥热干化含水率实时监测的HBA-SVM回归模型研究. 能源环境保护. 2023(04): 149-156 .
    2. 张路,杨悦,吕静思,鲁鹏,平清伟,李娜. 超声预处理对促瘤胃微生物厌氧消化造纸剩余污泥产酸的影响. 大连工业大学学报. 2022(05): 339-344 .
    3. 余理,陈广,周丕仁,季鸿先,邓文义. 湿污泥管道水膜降黏减阻的试验研究. 东华大学学报(自然科学版). 2022(06): 120-126 .
    4. 章华荣,芦佳,叶兴联,胡荣. 污泥热干化技术应用综述. 中国环保产业. 2020(01): 56-59 .
    5. 沈悦,胡修韧,田甘沛,边博. 化纤厂PTA废水处理污泥生物减量效果及影响因子. 中国环境科学. 2020(05): 2140-2147 .
    6. 张华,杨雪峰,谷朝阳,孙志超,赵广军,薛方勤. 印染行业污泥资源化技术研究和工程示范. 环境工程. 2020(11): 152-156 . 本站查看
    7. 吕静. 城市污泥性能及新型干化工艺研究. 化工管理. 2019(19): 37-38 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 4.4 %FULLTEXT: 4.4 %META: 94.0 %META: 94.0 %PDF: 1.6 %PDF: 1.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 22.9 %其他: 22.9 %上海: 0.7 %上海: 0.7 %东莞: 0.2 %东莞: 0.2 %中山: 0.2 %中山: 0.2 %丽水: 2.1 %丽水: 2.1 %佛山: 0.5 %佛山: 0.5 %包头: 1.2 %包头: 1.2 %北京: 2.1 %北京: 2.1 %十堰: 0.7 %十堰: 0.7 %南京: 0.9 %南京: 0.9 %南通: 0.5 %南通: 0.5 %台州: 0.5 %台州: 0.5 %合肥: 0.2 %合肥: 0.2 %呼和浩特: 0.9 %呼和浩特: 0.9 %咸阳: 0.7 %咸阳: 0.7 %嘉兴: 1.2 %嘉兴: 1.2 %大连: 0.2 %大连: 0.2 %天津: 4.6 %天津: 4.6 %太原: 0.5 %太原: 0.5 %宁波: 0.5 %宁波: 0.5 %宜春: 0.9 %宜春: 0.9 %宣城: 1.2 %宣城: 1.2 %常州: 0.2 %常州: 0.2 %常德: 0.2 %常德: 0.2 %广州: 0.7 %广州: 0.7 %张家口: 1.6 %张家口: 1.6 %徐州: 0.2 %徐州: 0.2 %成都: 0.7 %成都: 0.7 %扬州: 3.5 %扬州: 3.5 %无锡: 0.2 %无锡: 0.2 %昆明: 3.0 %昆明: 3.0 %杭州: 4.6 %杭州: 4.6 %武汉: 1.2 %武汉: 1.2 %沈阳: 0.2 %沈阳: 0.2 %济南: 0.2 %济南: 0.2 %海口: 0.5 %海口: 0.5 %深圳: 0.5 %深圳: 0.5 %温州: 2.5 %温州: 2.5 %湖州: 0.2 %湖州: 0.2 %漯河: 13.0 %漯河: 13.0 %漳州: 0.5 %漳州: 0.5 %盐城: 0.2 %盐城: 0.2 %石家庄: 1.2 %石家庄: 1.2 %福州: 0.7 %福州: 0.7 %秦皇岛: 0.5 %秦皇岛: 0.5 %芒廷维尤: 8.6 %芒廷维尤: 8.6 %芝加哥: 2.1 %芝加哥: 2.1 %苏州: 0.7 %苏州: 0.7 %衡阳: 0.2 %衡阳: 0.2 %西宁: 0.2 %西宁: 0.2 %西安: 0.5 %西安: 0.5 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.7 %运城: 0.7 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.9 %邯郸: 0.9 %郑州: 1.9 %郑州: 1.9 %重庆: 0.2 %重庆: 0.2 %长沙: 3.7 %长沙: 3.7 %青岛: 0.2 %青岛: 0.2 %其他上海东莞中山丽水佛山包头北京十堰南京南通台州合肥呼和浩特咸阳嘉兴大连天津太原宁波宜春宣城常州常德广州张家口徐州成都扬州无锡昆明杭州武汉沈阳济南海口深圳温州湖州漯河漳州盐城石家庄福州秦皇岛芒廷维尤芝加哥苏州衡阳西宁西安贵阳运城遵义邯郸郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (54) PDF downloads(0) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return