Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIU Yuhao, LÜ Haiyang, ZHAO Lei, WANG Xinyi, LI Guoting, SONG Gangfu. Carbon emissions reduction analysis of integrated venous industrial parks with solid waste incineration as the core process[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 51-61. doi: 10.13205/j.hjgc.202501006
Citation: LIU Yuhao, LÜ Haiyang, ZHAO Lei, WANG Xinyi, LI Guoting, SONG Gangfu. Carbon emissions reduction analysis of integrated venous industrial parks with solid waste incineration as the core process[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 51-61. doi: 10.13205/j.hjgc.202501006

Carbon emissions reduction analysis of integrated venous industrial parks with solid waste incineration as the core process

doi: 10.13205/j.hjgc.202501006
  • Received Date: 2024-03-18
  • Accepted Date: 2024-05-14
  • Rev Recd Date: 2024-04-30
  • Available Online: 2025-03-21
  • Publish Date: 2025-03-21
  • Within the framework of the new development plan to address the issue of global climate change, the treatment and disposal of solid waste will be guided by innovative concepts such as carbon recycling and energy regeneration. The construction and development of venous industrial parks are of great importance for achieving China’s national "Dual-Carbon" goal. Carbon emission reduction and resource recycling are both taken into consideration, in the development mode of integrated waste treatment in venous industrial parks. The scientific assessment of carbon emissions reduction efficacy in venous industrial parks could explore its developmental direction and furnish empirical evidence for governmental energy conservation and emission reduction policy formulation. Based on CDM methodology, presence and absence comparison method, emission factor method, this study selected a typical integrated venous industrial park with a domestic waste incineration plant as the core, and estimated and analyzed the carbon emission reduction of major projects, such as waste incineration cogeneration, construction waste recycling, and food and kitchen waste treatment in the park. The treatment capacity of various waste treated in the park is 1.407 million tons per year. The annual carbon emission reduction of the main project is 804,716 tons of CO2e. This study assessed the carbon emission reduction potential of the venous industrial parks, serving as a reference for its participation in carbon sink trading and the achievement of synergistic economic and environment.
  • [1]
    HONG H, GASPARATOS A. Eco-industrial parks in China: key institutional aspects, sustainability impacts, and implementation challenges[J]. Journal of Cleaner Production, 2020, 274: 122853.
    [2]
    常杪, 郭培坤, 邵启超. 中国静脉产业园区发展模式与案例研究[J]. 四川环境, 2013,32(5):118-124.

    CHANG M, GUO P K, SHAO Q C. Study on development patterns and typical cases of Chinese venous industrial parks[J]. Sichuan Environment, 2013,32(5):118-124.
    [3]
    龙吉生, 杜海亮, 邹昕,等. 关于城市生活垃圾处理碳减排的系统研究[J]. 中国科学院院刊, 2022, 37(8): 1143-1153.

    LONG J S, DU H L, ZOU X, et al. Systematic study on carbon emission reduction of municipal solid waste treatment[J]. Bulletin of the Chinese Academy of Sciences, 2022, 37(8): 1143-1153.
    [4]
    LIU L, WANG H, CUI X, et al. Green location-oriented policies and carbon efficiency: a quasi-natural experiment from National Eco-industrial Demonstration Parks in China[J]. Environmental Science and Pollution Research, 2023, 30(21): 59991-60008.
    [5]
    LOU Z, CAI B F, ZHU N, et al. Greenhouse gas emission inventories from waste sector in China during 1949—2013 and its mitigation potential[J]. Journal of Cleaner Production, 2017, 157: 118-124.
    [6]
    陈子璇, 郑苇, 高波, 等. 静脉产业园与低碳城市的关系研究[J]. 中国资源综合利用, 2020, 38(11):3. CHEN Z X, ZHENG W, GAO B, et al. Study on the relationship between venous industrial park and low-carbon city[J]. China Resources Comprehensive Utilization, 2020

    , 38(11):3.
    [7]
    王书军, 刘艳丽, 穆书涛. 关于促进京津冀静脉产业健康发展的思考[J]. 经济论坛, 2014(12):3. WANG S J, LIU Y L, MU S T. Thoughts on promoting healthy development of vein industry in Beijing-Tianjin-Hebei[J]. World Economic Forum, 2014(12

    ):3.
    [8]
    毕莹莹, 刘景洋, 董莉, 等. 城市静脉产业园物质代谢优化模式探讨[J]. 生态经济, 2019, 35(11):5. BI Y Y, LIU J Y, DONG L, et al. Discussion on optimization model of material metabolism in urban venous industrial parks[J]. Ecological Economy, 2019

    , 35(11):5.
    [9]
    陈小玲. 加快工业园区产业集聚跨越发展的思考[J]. 青年与社会,2019(6):119. CHEN X L. Reflections on accelerating the leapfrog development of industrial cluster in industrial parks[J]. Youth & Society,2019(6

    ):119.
    [10]
    段华波, 陈瑛, 蔡俊雄, 等. 固体废物利用与处置碳排放研究进展和发展趋势[J]. 环境科学学报, 2023, 43(6): 1-10.

    DUAN H B, CHEN Y, CAI J X, et al. Research progress and trend of carbon emissions from solid waste utilization and disposal[J]. Journal of Environmental Sciences, 2023, 43(6): 1-10.
    [11]
    NORDAHL S L, DEVKOTA J P, AMIREBRAHIMI J, et al. Life-cycle greenhouse gas emissions and human hhealth trade-offs of organic waste management strategies[J]. Environmental Science & Technology, 2020, 54(15): 9200-9209.
    [12]
    RIZAN C, BHUTTA M F, REED M, et al. The carbon footprint of waste streams in a UK hospital[J]. Journal of Cleaner Production, 2021, 286: 125446.
    [13]
    刘殊嘉. 静脉产业园沼气利用方式的碳减排分析[J]. 中国沼气, 2023, 41(2): 17-22.

    LIU S J. Carbon emission reduction analysis of biogas utilization method in vein industrial park[J]. China Biogas, 2023, 41(2): 17-22.
    [14]
    易志刚, 祖柱, 王瑞洋. 基于CCER方法学的餐厨垃圾处理项目碳减排量十年预测研究[J]. 广东化工, 2021, 48(11):5. YI Z G, ZU Z, WANG R Y. Research on 10

    -year prediction of carbon emission reduction of kitchen waste treatment project based on CCER methodology[J]. Guangdong Chemical Industry, 2021, 48(11):5.
    [15]
    江静,李飞,张政,等. 建筑垃圾资源化利用的减碳效益分析[J]. 新型建筑材料, 2023,50(11):6-10

    ,43. JIANG J, LI F, ZHANG Z, et al. Analysis of carbon reduction benefits from construction waste resource utilization[J]. New Building Materials, 2023,50(11):6-10,43.
    [16]
    王赛赛, 吴雄英, 丁雪梅. 三种LCA核算软件对印花布碳足迹核算的比较[J]. 印染, 2014(18):4. WANG S S, WU X Y, DING X M. Comparison of the industrial carbon footprint of printed fabrics using three LCA accounting software[J]. China Dyeing and Finishing, 2014(18

    ):4.
    [17]
    UGWU S N, HARDING K, ENWEREMADU C C. Comparative life cycle assessment of enhanced anaerobic digestion of agro-industrial waste for biogas production[J]. Journal of Cleaner Production, 2022, 345: 131178.
    [18]
    赵金兰, 王灵秀, 刘骁, 等. 中国自愿减排项目的发展与问题探讨[J]. 能源与节能, 2018(5): 54-56. ZHAO J L, WANG L X, LIU X, et al. Development of china certified emission reduction projects and discussion on related issues[J]. Energy and Conservation, 2018

    (5): 54-56.
    [19]
    马建平, 庄贵阳. CDM项目开发的风险因素识别与规避对策[J]. 华中科技大学学报(社会科学版), 2011, 25(2): 87-92. MA J P, ZHUANG G Y. Risk factor identification and avoidance measures in CDM project development[J]. Journal of Huazhong University of Science and Technology(Social Science), 2011, 25(2): 87-92.
    [20]
    黄静颖, 张浩, 谭钦怀, 等. 小型垃圾热解气化焚烧厂碳排放计算[J]. 环境卫生工程, 2021, 29(4): 1-6.

    HUANG J Y, ZHANG H, TAN Q H, et al. Calculation of carbon emissions of a small scale waste pyrolysis-gasification incineration plant[J]. Environmental Sanitation Engineering, 2021, 29(4): 1-6.
    [21]
    郝粼波, 梅阳, 何江海, 等. 建筑垃圾处理的碳减排作用分析[J]. 施工技术,2023,52(4):62-66.

    HAO L B, MEI Y, HE J H, et al. Analysis of carbon emission reduction effect of construction waste treatment[J]. Construction Technology,2023,52(4):62-66.
    [22]
    张楠, 孟祥瑞. 城市污水处理厂污泥处理处置碳排放分析[J]. 安徽理工大学学报(自然科学版), 2023, 43(5):83-93. ZHANG N, MENG X R. Carbon emissions from sludge treatment and disposals in municipal sewage treatment plant: a case study of huainan city[J]. Journal of Anhui University of Science and Technology(Natural Science), 2023, 43(5):83-93.
    [23]
    纪莎莎. 污泥干化焚烧工艺碳排放研究及优化策略[J]. 环境科技, 2019, 32(1): 49-53.

    JI S S. Study on carbon emission and optimization strategy of ssludge ddrying and incineration process[J]. Journal of Environmental Sciences, 2019, 32(1): 49-53.
    [24]
    Tools to Calculate Emissions from Solid Waste Disposal Sites[EB/OL]. [2023-11-05]. https://cdm.unfccc.int/methodologies/PA-methodologies/tools/am-tool-04-v8.0.pdf.
    [25]
    2019 IPCC Guidelines for National Greenhouse Gas Inventories[EB/OL]. [2023-11-05]. https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html.
    [26]
    Tool to Calculate the Emission Factor for an Electricity System[EB/OL]. [2023-11-05]. https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-07-v7.0.pdf.
    [27]
    Tool to Calculate Project or Leakage CO2 Emissions from Fossil Fuel Combustion[EB/OL]. [2023-11-13]. https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-03-v3.pdf.
    [28]
    王文波, 张灿. 垃圾焚烧发电行业的碳减排效应浅析[J]. 中国有色冶金, 2022, 51(3): 8-13.

    WANG W B, ZHANG C. Brief analysis of carbon emission reduction effect of waste incineration power generation industry[J]. China Nonferrous Metallurgy, 2022, 51(3): 8-13.
    [29]
    肖绪文. 绿色建造发展现状及发展战略[J]. 施工技术, 2018, 47(6): 1-4

    ,40. XIAO X W. State and development strategy for green construction[J]. Construction Technology, 2018, 47(6): 1-4,40.
    [30]
    蒋玲燕. 上海某污水处理厂污泥深度脱水运行优化探索[J]. 给水排水, 2019, 55(9): 25-28

    ,35. JIANG L Y. Optimization of sludge advanced dewatering system for a wastewater treatment plant in Shanghai[J]. Water & Wastewater Engineering, 2019, 55(9): 25-28,35.
    [31]
    郝晓地, 陈奇, 李季, 等. 污泥干化焚烧乃污泥处理/处置终极方式[J]. 中国给水排水, 2019, 35(4): 35-42.

    HAO X D, CHEN Q, LI J, et al. Ultimate approach to handle excess sludge: incineration and drying[J]. China Water & Wastewater, 2019, 35(4): 35-42.
    [32]
    伍志文.基于《CM-072-V01多选垃圾处理方式》对垃圾焚烧发电厂碳减排效益的研究—以深圳市某垃圾焚烧发电厂为例[J]. 中文科技期刊数据库(全文版)自然科学, 2022(10):0057-0061. WU Z W. Research on carbon emission reduction benefits of waste incineration power plants based on "CM-072

    -V01 Multi-Choice Waste Treatment Methods"—a case study of a waste incineration power plant in Shenzhen[J]. Chinese Science and Technology Journal Database (full text) Natural Sciences, 2022(10):0057-0061.
  • Relative Articles

    [1]LOU Mingyue, LIU Guangbing, LIU Weijing, MENG Xi, SHI Mengqi, GUO Mingchen. RESEARCH ON CARBON EMISSION ACCOUNTING METHOD FOR TYPICAL WASTEWATER COLLECTION UNITS BASED ON ANAEROBIC CARBON CYCLE THEORY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 61-71. doi: 10.13205/j.hjgc.202411007
    [2]ZHANG Wanjun, CHEN Dan, HU Le, SUN Hao, JI Wei. STUDY ON A CARBON EMISSION METHOD FOR SMALL IRRIGATION PUMPING STATIONS BASED ON HYBRID LIFE CYCLE ASSESSMENT THEORY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 211-219. doi: 10.13205/j.hjgc.202402025
    [3]QIU Boran, XIA Yijia, BI Jingran, YU Tao, LIN Tong, ZHANG Hanqi, MA Fengmin, ZHEN Guangyin. CARBON EMISSION REDUCTION POTENTIAL FROM CHINA MUNICIPAL SOLID WASTE SORTING TREATMENT BASED ON THE “TWO NETWORKS INTEGRATION” MODEL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 183-191. doi: 10.13205/j.hjgc.202405023
    [4]TONG Jiaxin, LI Yi, ZHANG Wenlong, HOU Xing. RESEARCH ON WATER NETWORK OPTIMIZATION OF HIGH-TECH INDUSTRIAL PARKS FACING LOW-CARBON CONSTRAINTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 153-161. doi: 10.13205/j.hjgc.202411017
    [5]CHEN Xin, JIANG Chencan. A METHOD FOR ANALYSIS AND CALCULATION OF RIVER OVERFLOW POLLUTION BASED ON MONITORING DATA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 273-278. doi: 10.13205/j.hjgc.202404032
    [6]LI Suzhen, REN Jiaqi, CUI Yuwei, ZHANG Zhe. ACCOUNTING OF CARBON FOOTPRINT OF WUYISHAN TOURISM INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 312-318. doi: 10.13205/j.hjgc.202312039
    [7]WU Cuihua, YU Xiaohua, GAO Junzheng, YAN Haochun, LU Yintao, YAO Hong. CARBON EMISSION ACCOUNTING AND REDUCTION ANALYSIS OF WASTE COLLABORATIVE DISPOSAL IN TYPICAL CEMENT KILNS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 30-36,60. doi: 10.13205/j.hjgc.202307005
    [8]ZHAO Zixuan, WANG Jianlong, WANG Wenhai, XIA Yanhui, YANG Feng. A CALCULATION METHOD FOR WATER SURFACE CURVE OF RECTANGULAR CHANNEL WITH UNIFORM INFLOW[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 21-25. doi: 10.13205/j.hjgc.202303003
    [9]LIU Jun, PAN Tianqi, ZHAO Huihui, GUO Yan, CHEN Guanyi, HOU Li'an. A MODEL OF CARBON EMISSION REDUCTION CALCULATION FOR AEROBIC REMEDIATION PROCESS IN MSW LANDFILLS BASED ON PRINCIPAL COMPONENT ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 133-139. doi: 10.13205/j.hjgc.202309016
    [10]YIN Wenhua, LONG Shikang, HE Zhiyuan, ZHENG Yiyun, LIU Lijun, XIE Danping, ZHAN Wensen. IMPACT OF CO-INCINERATION OF MSWI WITH AGED REFUSE ON GASEOUS POLLUTANTS EMISSION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 76-80,87. doi: DOI:10.13205/j.hjgc.202207011
    [11]XIE Feng, WANG Yungang, YAN Feng, WANG Pengju, XU Jiyun, ZHANG Zuotai. RESEARCH PROGRESS OF DIOXIN INHIBITORS FOR MUNICIPAL SOLID WASTE INCINERATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 222-231,247. doi: DOI:10.13205/j.hjgc.202207031
    [12]ZHAO Xi, WU Shan-shan, LU Ke-ding. DEVELOPMENT OF AN EVALUATION SYSTEM FOR ASSESSING CONSTRUCTION LEVEL IN OPERATION OF MUNICIPAL SOLID WASTE COMPREHENSIVE TREATMENT PARK FOR ZERO-WASTE CITIES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 136-140,15. doi: 10.13205/j.hjgc.202102022
    [13]REN Zhong-shan, CHEN Ying, WANG Yong-ming, TENG Jing-jie, QIAO Peng. ANALYSIS OF INFLUENCE OF DOMESTIC WASTE CLASSIFICATION ON DEVELOPMENT OF WASTE INCINERATION POWER GENERATION INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 150-153,206. doi: 10.13205/j.hjgc.202106022
    [15]CALCULATION OF CARBON EMISSION REDUCTION OF NEW ENERGY VEHICLES AND ANALYSIS OF ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 148-152. doi: 10.13205/j.hjgc.201412027
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.8 %FULLTEXT: 18.8 %META: 81.3 %META: 81.3 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 100.0 %其他: 100.0 %其他

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (25) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return