Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YI Mingjian, LI Yi, ZHAO Qiang, JIANG Yongqing, QIU Junxia. SNA ions in urban ambient air particles and their deposition in eastern China[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 155-166. doi: 10.13205/j.hjgc.202501017
Citation: YI Mingjian, LI Yi, ZHAO Qiang, JIANG Yongqing, QIU Junxia. SNA ions in urban ambient air particles and their deposition in eastern China[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 155-166. doi: 10.13205/j.hjgc.202501017

SNA ions in urban ambient air particles and their deposition in eastern China

doi: 10.13205/j.hjgc.202501017
  • Received Date: 2023-11-14
  • Accepted Date: 2024-04-18
  • Rev Recd Date: 2023-12-27
  • Available Online: 2025-03-21
  • Publish Date: 2025-03-21
  • To comprehend the disparities in the deposition characteristics of SNA ions in fine particulate matter in eastern China, this study initially utilized PM2.5 concentration data from 98 cities in the region spanning from 2015 to 2022. The data underwent analysis via the K-means algorithm and were categorized into three groups: LPC, MPC, and HPC, based on ascending concentration levels. The findings revealed a decreasing trend in the daily average PM2.5 concentration across most cities. However, noteworthy distinctions emerged among cities categorized under different attributes, with the distribution of types closely linked to regional location. The study employed the WRF/CAMx model to simulate particulate matter fractions and wet and dry deposition rates in six representative cities: Jinan, Zhengzhou, Hefei, Nanjing, Hangzhou, and Shanghai. It revealed significant seasonal variations in important water-soluble ions, namely SNA ions (NO3-, SO42-, and NH4+), within PM2.5. Specifically, in January, the mass concentration of NO3- in MPC-type cities was approximately 1.46 to 1.88 times higher than that in HPC and LPC-type cities. However, this discrepancy decreased in April, July, and October, resulting in a narrowed difference between different categories. Similar patterns were observed for NH4+, while SO42- exhibited relatively lower concentration levels with the least significant differences. Furthermore, the simulation results indicated that wet deposition fluxes of various ionic components were not only correlated with PM2.5 concentration and ion mass concentration but also significantly influenced by precipitation. Dry and wet deposition continuously and steadily reduced the concentration of particulate matter in the air, especially in the later stages of the pollution process. Its contribution was more significant. By comparing the difference in wet sedimentation flux and precipitation between different cities, it was concluded that SNA ion wet sedimentation flux was the result of the combined action of precipitation and ion mass concentration. The natural sedimentation process was one of the stable and continuous removal mechanisms of fine particles in the atmosphere. The dry sedimentation effect was more significant in northern cities, and the wet sedimentation effect was more frequent in southern cities. Later in the pollution process, the contribution of sedimentation became more prominent.
  • [1]
    FENG X, TIAN Y, XUE Q, et al. Measurement report: spatiotemporal and policy-related variations of PM2.5 composition and sources during 2015—2019 at multiple sites in a Chinese megacity[J]. Atmospheric Chemistry and Physics, 2021, 21(21): 16219-16235.
    [2]
    王显钦,费学海,杨员,等.贵阳市花溪城区PM2.5中重金属元素的污染特征、来源及健康风险评价[J].环境科学学报,2023,43(6):110-118.

    WANG X Q, FEI X H, YANG Y, et al. Pollution characteristics, sources apportionment and health risk assessment of heavy metal elements in PM2.5 collected in Huaxi urban areas, Guiyang[J]. Acta Scientiae Circumstantiae, 2023,43(6):110-118.
    [3]
    魏彤,李政蕾,陈昱,等.长三角居民PM2.5暴露水平下降的健康效益评估[J].中国环境科学,2023,43(6):3211-3219.

    WEI T, LI Z L, CHEN Y, et al. Assessment of the health benefit of declining PM2.5 levels in the Yangtze River Delta[J]. China Environmental Science, 2019,43(6):3211-3219.
    [4]
    蔡子颖,杨旭,吕妍,等.基于环境模式PM2.5的渤海及其西岸能见度预报技术优化研究[J].环境科学学报,2022,42(6):260-273.

    CAI Z Y, YANG X, LV Y, et al. The research on improving visibility forecast in Bohai Sea and West Coast of Bohai sea based on environmental model PM2.5[J]. Acta Scientiae Circumstantiae, 2002,42(6):260-273.
    [5]
    任娇,赵荣荣,王铭,等.太原市冬季不同污染程度下PM2.5的化学组成、消光特征及氧化潜势[J].环境科学,2022,43(5):2317-2328.

    REN J, ZHAO R R, WANG M, et al. Chemical composition, extinction characteristics and oxidation potential of PM2.5 under different pollution levels in winter in Taiyuan[J]. Environmental Science, 2012,43(5):2317-2328.
    [6]
    WANG S, LIU G, ZHANG H, et al. Insight into the environmental monitoring and source apportionment of volatile organic compounds (VOCs) in various functional areas[J]. Air Quality, Atmosphere & Health, 2022: 1-11.
    [7]
    CHEN Y, XIE S, LUO B, et al. Characteristics and sources of water-soluble ions in PM2.5 in the Sichuan Basin, China[J]. Atmosphere, 2019, 10(2): 78.
    [8]
    LIU Y, WANG J, ZHAO X, et al. Characteristics, secondary formation and regional contributions of PM2.5 pollution in Jinan during winter[J]. Atmosphere, 2020, 11(3): 273.
    [9]
    薛莲,刘岳峰,赵璐.采暖期与非采暖期青岛市区PM2.5组分特征及来源分析[J].环境与发展,2021,33(2):170-173.

    XUE L, LIU Y F, ZHAO L. Chemical composition characteristics and source analysis of PM2.5 in the heating periodin the heating period and non-heating period in urban Qingdao[J]. Environment and Development, 2021, 33(2):170-173.
    [10]
    赵孝囡,王申博,杨洁茹,等.郑州市PM2.5组分、来源及其演变特征[J].环境科学,2021,42(8):3633-3643.

    ZHAO X N, WANG S B, Yang J R, et al. Chemical components and sources of PM2.5 and their evolutive characteristics in Zhengzhou[J]. Environmental Science, 2019,42(8):3633-3643.
    [11]
    张程,于兴娜,安俊琳,等.南京北郊不同大气污染程度下气溶胶化学组分特征[J].环境科学,2017,38(12):4932-4942.

    ZHANG C, YU X N, AN J L, et al. Aerosol chemical characteristics for different air pollution levels in north suburban Nanjing[J]. Environmental Science,2017,38(12):4932-4942.
    [12]
    GUO Q, CHEN K, XU G. Characteristics and sources of water-soluble inorganic ions in PM2.5 in urban Nanjing, China[J]. Atmosphere, 2023, 14(1): 135.
    [13]
    YI M, JIANG Y, ZHAO Q, et al. Spatiotemporal variation and driving factors for NO2 in Mid-Eastern China[J]. Atmosphere, 2023, 14(9): 1369.
    [14]
    GAO Y, ZHOU F, CIAIS P, et al. Human activities aggravate nitrogen-deposition pollution to inland water over China[J]. National Science Review, 2020, 7(2): 430-440.
    [15]
    韩珣,任杰,陈善莉,等.基于硫氧同位素研究南京北郊夏季大气中硫酸盐来源及氧化途径[J].环境科学,2018,39(5):2010-2014.

    HAN X, REN J, CHEN Shanli, et al. Sulfur sources and oxidation pathways in summer aerosols from Nanjing northern suburbs using S and O isotopes[J]. Environmental Science,2018,39(5):2010-2014.
    [16]
    苏航,闫东杰,黄学敏,等.西安市人为源大气氨排放清单及特征[J].环境科学,2016,37(11):4117-4123.

    SU H, YAN D J, HUANG X M, et al. Inventory and characteristics of atmospheric ammonia emissions in Xi'an[J]. Environmental Science,2016,37(11):4117-4123.
    [17]
    XIONG C, YU S, CHEN X, et al. Dominant contributions of secondary aerosols and vehicle emissions to water-soluble inorganic ions of PM2.5 in an urban site in the metropolitan Hangzhou, China[J]. Atmosphere, 2021, 12(11): 1529.
    [18]
    LIN Y C, ZHANG Y L, FAN M Y, et al. Heterogeneous formation of particulate nitrate under ammonium-rich regimes during the high-PM2.5 events in Nanjing, China[J]. Atmospheric Chemistry and Physics, 2020, 20(6): 3999-4011.
    [19]
    GAO J, LI Y, LI J, et al. Impact of formation pathways on secondary inorganic aerosol during haze pollution in beijing: quantitative evidence from high-resolution observation and modeling[J]. Geophysical Research Letters, 2021, 48(23): e2021GL095623.
    [20]
    张国忠,崔阳,潘月鹏,等.渤海湾大气金属元素沉降和来源解析研究[J].环境科学学报,2019,39(8):2708-2716.

    ZHANG G Z, CUI Y, PAN Y P, et al. Deposition fluxes and source apportionment of atmospheric trace metals in Bohai Bay[J]. Acta Scientiae Circumstantiae,2019,39(8):2708-2716.
    [21]
    GUO X, LI S, ZHANG Y, et al. Applications of dynamic simulation for source analysis of soil pollutants based on atmospheric diffusion and deposition model[J]. Science of the Total Environment, 2022, 839: 156057.
    [22]
    郝晓地,罗玉琪,曹达啟,等.雾霾亦可诱发水体富营养化[J].中国给水排水,2018,34(6):12-15

    ,21. HAO X D, LUO Y Q, CAO D Q, et al. Induction of haze to eutrophication of surface water[J]. China Water Supply and Drainage,2018,34(6):12-15,21.
    [23]
    赵亚伟.邯郸市大气干湿沉降特征及对水体影响研究[D].邯郸:河北工程大学,2019. ZHAO Y W. Study on the characteristics of dry and wet atmospheric deposition and its influence on water body in Handan[D]. Handan: Hebei University of Engineering,2019.
    [24]
    杨开军,杨万勤,庄丽燕,等.四川盆地西缘都江堰大气氮素湿沉降特征[J].应用与环境生物学报,2018,24(1):107-111.

    YANG K J, YANG W Q, ZHUANG L Y, et al. Characteristics of atmospheric nitrogen wet deposition in Dujiangyan, western margin of Sichuan Basin[J]. Chinese Journal of Applied & Environmental Biology,2018,24(1):107-111.
    [25]
    周石磊,孙悦,黄廷林,等.周村水库大气湿沉降氮磷及溶解性有机物特征[J].水资源保护,2020,36(3):52-59.

    ZHOU S L, SUN Y, HUANG T L, et al. Characteristics of nitrogen, phosphorus and dissolved organic matter in atmospheric wet deposition of Zhoucun Reservoir[J]. Water Resources Protection, 2020,36(3):52-59.
    [26]
    王小剑,张海霞,蔡昂祖,等.邯郸市大气氮干湿沉降特征研究[J].环境科学与技术,2020,43(12):104-111.

    WANG X J, ZHANG H X, CAI A Z, et al. Study on the nitrogen characteristics of atmospheric dry and wet deposition in Handan City[J]. Environmental Science and Technology,2020,43(12):104-111.
    [27]
    何瑞亮,蒋勇军,张远瞩,等.重庆市近郊大气无机氮、硫沉降特征及其来源分析[J].生态学报,2019,39(16):6173-6185.

    HE R L, JIANG Y J, ZHANG Y Z, et al. Characteristics and sources of atmospheric inorganic nitrogen and sulfur deposition in the suburbs of Chongqing[J]. Acta Ecologica Sinica,2019,39(16):6173-6185.
    [28]
    朱梦圆,程新良,朱可嘉,等.千岛湖大气氮磷干湿沉降特征及周年入库负荷[J].环境科学研究,2022,35(4):877-886.

    ZHU M Y, CHENG X L, ZHU K J, et al. Atmospheric deposition characteristics and flux of nitrogen and phosphorus in Qiandaohu Reservoir, China[J]. Research of Environmental Sciences,2022,35(4):877-886.
    [29]
    刘思言,陈瑾,卢平,等.广东韶关地区大气氮干湿沉降特征研究[J].生态环境学报,2014,23(9):1445-1450.

    LIU S Y, CHEN J, LU P, et al. Dry and wet atmospheric deposition of nitrogen into Shaoguan, Guangdong Province[J]. Ecology and Environmental Sciences,2014,23(9):1445-1450.
    [30]
    牛勇,牛远,王琳杰,等.2009—2018年太湖大气湿沉降氮磷特征对比研究[J].环境科学研究,2020,33(1):122-129.

    NIU Y, NIU Y, WANG L J, et al. Comparative study on nitrogen and phosphorus characteristics of atmospheric wet deposition in Taihu Lake from 2009 to 2018[J]. Research in Environmental Sciences, 2019,33(1):122-129.
    [31]
    杨小林,贺梦微,陈艺晏,等.丹江口库区大气氮干湿沉降动态变化特征研究[J].人民长江,2022,53(5):62-68.

    YANG X L, HE M W, CHEN Y Y, et al. Dynamic characteristics of atmospheric nitrogen dry and wet deposition in Danjiangkou Reservoir area[J]. Yangtze River of the People,2022,53(5):62-68.
    [32]
    樊洋成,刘萍.基于WRF-CMAQ的中国典型湖泊大气氮沉降特征[J].长江科学院院报,2024,41(2):27-36.

    FAN Y C, LIU P. Characteristics of atmospheric nitrogen deposition in typical lake across China based on the WRF-CMAQ model[J]. Journal of Yangtze River Scientific Research Institute, 2024,41(2):27-36.
    [33]
    马胜,杨晓峰,李紫薇.基于GOME-2卫星遥感数据估算近海海域氮沉降通量的方法研究[J].海洋环境科学,2012,31(2):272-276.

    MA S, YANG X F, LI Z W. An approach of estimating the atmospheric deposition of nitrogen to the coastal water using GOME-2 satellite data[J]. Marine Environmental Science, 2012, 31(2): 272-276.
    [34]
    环境保护部,国家质量监督检疫检验总局.环境空气质量标准:GB 3095—2012[S].北京:中国环境科学出版社. Ministry of Environmental Protection, State Administration of Quality Supervision, Quarantine and Inspection. Ambient Air Quality Standard: GB 3095—2012[S]. Beijing: China Environmental Science Press.
    [35]
    环境保护部.环境空气质量评价技术规范(试行):HJ 663—2013[S].北京:中国环境科学出版社. Ministry of Environmental Protection. Technical Regulation for Ambient Air Quality Assessment (on Trial): HJ 663—2013[S]. Beijing: China Environmental Science Press.
    [36]
    刘浪,张文杰,杜世勇,等.利用SPAMS分析北京市硫酸盐、硝酸盐和铵盐季节变化特征及潜在源区分布[J].环境科学,2016,37(5):1609-1618.

    LIU L, ZHANG W J, DU S Y, et al. Seasonal variation characteristics and potential source contribution of sulfate,nitrate and ammonium in Beijing by using single particle aerosol mass spectrometry[J]. Environmental Science, 2016,37(5):1609-1618.
    [37]
    IKOTUN A M, EZUGWU A E, ABUALIGAH L, et al. K-means clustering algorithms: a comprehensive review, variants analysis, and advances in the era of big data[J]. Information Sciences, 2023, 622: 178-210.
    [38]
    国家气象科学数据中心[EB/OL]. http://data.cma.cn/National Data Center for Meteorological Sciences[EB/OL]. http://data.cma.cn/.
    [39]
    中国环境监测总站[EB/OL]. http://www.cnemc.cn/. China General Station of Environmental Monitoring[EB/OL]. http://www.cnemc.cn/.
    [40]
    张懿华.长三角地区PM2.5区域性污染时空变化特征[J].环境科学研究,2022,35(1):1-10.

    ZHANG Y H. Spatial-Temporal Characteristics of PM2.5 regional pollution in Yangtze River Delta Region[J]. Research of Environmental Sciences, 2022,35(1):1-10.
    [41]
    姜磊,周海峰,赖志柱,等.中国城市PM2.5时空动态变化特征分析:2015—2017年[J].环境科学学报,2018,38(10):3816-3825.

    JIANG L, ZHOU H F, LAI Z Z, et al. Analysis of spatio-temporal characteristic of PM2.5 concentrations of Chinese cities: 2015—2017[J].Acta Scientiae Circumstantiae,38(10):3816-3825.
    [42]
    吴舒祺,么嘉棋,杨冉,等.长三角城市群PM2.5时空变化和影响因素分析[J].环境科学,2023,44(10):5325-5334.

    WU S Q, MO J Q, YANG R, et al.Spatio-temporal variations in PM2.5and its influencing factors in the Yangtze River delta urban agglomeration[J]. Environmental Science, 2023, 44 (10): 5325-5334.
    [43]
    陈伟,徐学哲,刘文清.2017—2021年苏皖鲁豫交界区域PM2.5和O3时空变化特征及影响因素[J].环境科学,2024,45(4):1950-1962.

    CHEN W, XU X Z, LIU W Q. Spatial-temporal characteristics and influencing factors of PM2.5 and O3 in the border area of Jiangsu, Anhui, Shandong and Henan from 2017 to 2021[J]. Environmental Science,2024, 45(4): 1950-1962.
    [44]
    郭昌胜,高雅,樊境朴,等.我国大气污染和气候变化协同治理的健康效益研究进展[J].环境科学研究,2023,36(11):2040-2049.

    GUO C S, GAO Y, FAN J P, et al. Research progress on health benefits of collaborative management of air pollution and climate change in China[J]. Research of Environmental Sciences,2023,36(11):2040-2049.
    [45]
    姚青,唐颖潇,蔡子颖,等.京津冀区域典型城市PM2.5污染特征及其成因研究[J].环境科学学报,2022,42(7):43-52.

    YAO Q, TANG Y X, CAI Z Y, et al. Evaluation of PM2.5 pollution characteristics and formation mechanisms of typical cities in Beijing-Tianjin-Hebei region[J]. Journal of Environmental Sciences,2022,42(7):43-52.
    [46]
    杨童,杨显玉,阮温馨,等.2021年冬季四川盆地区域PM2.5重污染事件成因及来源解析[J].中国环境科学,2023,43(11):5633-5644.

    YANG T, YANG X Y, RUAN W X, et al. ibution and source apportionment of a severe PM2.5 episode in winter 2021 over the Sichuan Basin[J]. China Environmental Science, 2023,43(11):5633-5644.
    [47]
    雍佳,王建英,田林锋,等.2021年宁夏两次持续沙尘重污染天气对比分析[J].环境科学研究,2024,37(2):289-298.

    YONG J, WANG J Y, TIAN L F, et al. Comparative and analysis of two persistent severe dust pollution weather events in Ningxia in 2021[J]. Research in Environmental Sciences, 2024, 37(2): 289-298.
    [48]
    耿天召,童欢欢,赵旭辉,等.江淮地区湿沉降对颗粒物清除能力的影响[J].环境科学研究,2019,32(2):273-283.

    GENG T Z, TONG H H, ZHAO X H, et al. Effect of wet deposition on the removal efficiency of particulate matter in the Yangtze-Huaihe Region[J]. Research of Environmental Sciences,2019,32(2):273-283.
    [49]
    GUO W, ZHANG Z, ZHENG N, et al. Chemical characterization and source analysis of water-soluble inorganic ions in PM2.5 from a plateau city of Kunming at different seasons[J]. Atmospheric Research, 2020, 234: 104687.
    [50]
    QIAO B, CHEN Y, TIAN M, et al. Characterization of water soluble inorganic ions and their evolution processes during PM2.5 pollution episodes in a small city in southwest China[J]. Science of the Total Environment, 2019, 650: 2605-2613.
    [51]
    CHENG C, SHI M, LIU W, et al. Characteristics and source apportionment of water-soluble inorganic ions in PM2.5 during a wintertime haze event in Huanggang, central China[J]. Atmospheric Pollution Research, 2021, 12(1): 111-123.
    [52]
    ZHAN Y, XIE M, GAO D, et al. Characterization and source analysis of water-soluble inorganic ionic species in PM2.5 during a wintertime particle pollution episode in Nanjing, China[J]. Atmospheric Research, 2021, 262: 105769.
    [53]
    HUANG Y, ZHANG L, PENG C, et al. Pollution characteristics of water-soluble inorganic ions in PM2.5 from a mountainous city in Southwest China[J]. Atmosphere, 2022, 13(10): 1713.
    [54]
    XIE Y, LU H, YI A, et al. Characterization and source analysis of water-soluble ions in PM2.5 at a background site in Central China[J]. Atmospheric Research, 2020, 239: 104881.
    [55]
    李欣怡,向伟玲,陈学舜,等.曹妃甸工业区空气污染来源及其对周边地区污染贡献的数值模拟研究[J].气候与环境研究,2019,24(4):469-481.

    LI X Y, XIANG W L, CHEN X S, et al. Modeling study of PM2.5 source apportionment over the Caofeidian industrial zone and surrounding areas [J]. Climatic and Environmental Research,2019,24(4):469-481.
    [56]
    张文娟,李敏,付华轩,等.济南市PM2.5化学组分及污染特征分析[J].环境污染与防治,2019,41(12):1490-1494.

    ZHANG W J, LI M, FU H X, et al. Pollution characteristic and chemical composition of PM2.5 in Jinan[J]. Environmental Pollution and Control,2019,41(12):1490-1494.
    [57]
    郭蒙蒙.郑州市2018年大气颗粒物PM2.5的污染特征、来源解析及健康风险评估[D].郑州:郑州大学,2020. GUO M M. Pollution characteristics, source apportionment and health risk assessment of PM2.5 in 2018

    in Zhengzhou[D]. Zhengzhou:Zhengzhou University,2020.
    [58]
    刘晓明.南京地区细颗粒物组分分析及其对秀丽隐杆线虫的毒性效应[D].南京:南京信息工程大学,2023. LIU X M. Composition analysis of fine particulate matter and its toxic effect on C. elegans in Nanjing[D]. Nanjing:Nanjing University of Information Science and Technology,2023.
    [59]
    严仁嫦,林旭,许凯儿,等.2019年杭州市PM2.5化学组成特征分析[J].四川环境,2023,42(2):76-82.

    YAN R C, LIN X, XU K E, et al.Analysis of chemical composition characteristics of PM2.5 in Hangzhou in 2019 [J]. Sichuan Environment, 2023,42(2):76-82.
    [60]
    黄敏.上海浦东新区城区大气PM2.5中水溶性离子污染特征研究[J].环境监控与预警,2022,14(2):70-77.

    HUANG M. Study on pollution characteristics of water-soluble ions in PM2.5 in Pudong New District [J]. Environmental Monitoring and Warning, 2022, 14 (2): 70-77.
    [61]
    周菁清,余磊,陈书鑫,等.浙江省大气颗粒物PM2.5化学组分污染特征分析[J].环境科学,2023,44(3):1297-1309.

    ZHOU J Q, YU L, CHEN S X, et al. Pollution characteristics of PM2.5 chemical composition in Zhejiang Province[J]. Environmental Science,2023,44(3):1297-1309.
    [62]
    合肥市统计局, 国家统计局合肥调查队. 合肥统计年鉴-2020[M]. 北京: 中国统计出版社, 2020. Hefei Municipal Bureau of Statistics, Survey Office of the National Bureau of Statistics in Hefei. Hefei Statistical Yearbook-2020[M]. Beijing: China Statistics Press.
    [63]
    国家统计局, 国家统计局上海调查总队. 上海统计年鉴-2020[M]. 北京: 中国统计出版社, 2020. Shanghai Municipal Statistics Bureau, Survey Office of the National Bureau of Statistics in Shanghai. Shanghai Statistical Yearbook-2020[M]. Beijing: China Statistics Press.
    [64]
    林丹,王维佳,郭建平,等.降水对四川盆地细颗粒物的清除作用分析[J].气象与环境科学,2023,46(5):67-74.

    LIN D, WANG W J, GUO J P, et al. Scavenging effect of precipitation on removal of fine particles in Sichuan Basin[J].Meteorological and Environmental Sciences, 2023,46(5):67-74.
    [65]
    CHEN F, LAO Q, JIA G, et al. Seasonal variations of nitrate dual isotopes in wet deposition in a tropical city in China[J]. Atmospheric Environment, 2019, 196: 1-9.
    [66]
    HOGREFE C, GALMARINI S, SOLAZZO E, et al. Continental-scale analysis of atmospheric deposition over North America and Europe using the AQMEII database[C]//Air Pollution Modeling and its Application XXVI 36. Springer International Publishing, 2020: 305-308.
    [67]
    刘美娜,陈志立,宋韦,等.北京东灵山大气氮沉降水平及变化特征[J].生态学杂志,2023,42(12):2987-2997.

    LIU M N, CHEN Z L, SONG W, et al. Deposition levels and dynamics of atmospheric nitrogen at Mt. Dongling of Beijing,China[J]. Chinese Journal of Ecology, 2023,42(12):2987-2997.
  • Relative Articles

    [1]ZHANG Xiaoyan, WANG Zhi, LI Zhiyu, LI Jian, YAN Beibei, ZUO Xiaoyu, YANG Gaixiu, TAO Junyu, CHEN Guanyi. ENVIRONMENTAL IMPACT ASSESSMENT ON FUEL GAS PRODUCTION FROM DISTILLER’S GRAINS BY ANAEROBIC DIGESTION COUPLED WITH GASIFICATION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 63-71. doi: 10.13205/j.hjgc.202401009
    [2]YE Ning, LU Hao, SHI Chen, LÜ Yizheng, QIAN Yisen, TIAN Jinping, ZHANG Suyi, HU Yongqi, LEI Xiangyun, CHEN Lüjun. UNCOVERING LIFE CYCLE ENVIRONMENTAL IMPACTS OF NEW PROCESSES ON RESOURCES AND ENERGY RECOVERY OF BAIJIU DISTILLER’S GRAINS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 135-143. doi: 10.13205/j.hjgc.202401018
    [3]LI Si, YUAN Huizhou, KE Shuizhou, LIU Xiaoming. CARBON NEUTRAL POTENTIAL OF WHOLE PROCESS OF CO-DIGESTION OF FOOD WASTE AND SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 90-98. doi: 10.13205/j.hjgc.202411010
    [4]SHI En, ZHANG Shuai, ZHANG Miao, LIU Shasha, ZOU Yuliang, ZHANG Xiangzhi. ENVIRONMENTAL IMPACT ASSESSMENT OF SLUDGE-BASED ACTIVATED CARBON PREPARATION PROCESS BASED ON LIFE CYCLE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 40-47. doi: 10.13205/j.hjgc.202402005
    [5]WANG Tao, YUE Bo, MENG Bangbang, LIU Bo, GAO Hong. A LIFE CYCLE ASSESSMENT OF SECONDARY COPPER PRODUCTION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 225-232. doi: 10.13205/j.hjgc.202407025
    [6]WANG Lin, YANG Muyan, GAO Yuqiang. CALCULATION AND ANALYSIS OF CARBON EMISSION IN CONSTRUCTION STAGE OF LOESS TUNNEL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 99-107,172. doi: 10.13205/j.hjgc.202310013
    [7]LIAO Chengfeng, LIU Yuchen, TANG Yuting, TANG Jiehong, MA Xiaoqian. LIFE CYCLE ASSESSMENT AND TECHNO-ECONOMIC ANALYSIS OF PRODUCING AMMONIA BY ALGAL BIOMASS GASIFICATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 187-194. doi: 10.13205/j.hjgc.202305025
    [8]LIAO Ziying, ZHANG Huanjun, HAN Shuguang, PAN Zhengguo, LI Yi. LIFE CYCLE ASSESSMENT OF TYPICAL CYANOBACTERIA TREATMENT EQUIPMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 143-150. doi: 10.13205/j.hjgc.202306019
    [9]LI Wei, CHEN Gang, CAO Taibo, YANG Fangsheng, CHEN Kunyang, WU Huanyu. CARBON EMISSION INTENSITY AND CARBON REDUCTION POTENTIAL IN RECYCLING AND DISPOSAL OF SUBWAY-RELATED SHIELD MUCK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 53-60. doi: 10.13205/j.hjgc.202307008
    [10]ZHANG Jiwen, XU Zunzhu, ZHANG Yuwei, CHEN Yuqi, JIN Xiaoxian, LIU Dong, LU Zhaoyang. LIFE CYCLE ASSESSMENT OF COORDINATED TREATMENT OF WASTE GAS POLLUTION AND CARBON REDUCTION IN ANAEROBIC POND IN A PHARMACEUTICAL FACTORY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 192-201. doi: 10.13205/j.hjgc.202303026
    [11]QUAN Zhaoxi, CHEN Xiangsheng, CHEN Feng, GAO Wang, HAN Wenlong. ANALYSIS OF CARBON REDUCTION EFFECT OF TUNNEL CONSTRUCTION MUCK SOIL UTILIZATION BASED ON LIFE CYCLE ASSESSMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 91-98,162. doi: 10.13205/j.hjgc.202310012
    [12]SU Yue-huan, ZHANG Yu, DUAN Hua-bo, LI Qiang-feng. RESEARCH ON ENVIRONMENTAL IMPACT ASSESSMENT AND EMISSION REDUCTION POTENTIAL OF METRO CONSTRUCTION: A CASE STUDY IN SHENZHEN, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 184-192,236. doi: 10.13205/j.hjgc.202205027
    [13]WANG Jiaqi, DAI Chengna, YU Gangqiang, WU Bin, LIU Ning, XU Ruinian, WANG Ning, CHEN Biaohua. TECHNO-ENVIRONMENTAL ASSESSMENT IN NATURAL GAS DEHYDRATION WITH IMIDAZOLIUM-BASED IONIC LIQUIDS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 199-210. doi: 10.13205/j.hjgc.202211028
    [14]JIE Chao, WANG Si-si, LÜ Bin. ENVIRONMENTAL IMPACT ANALYSIS OF PERMEABLE CEMENT CONCRETE PAVEMENT IN BEIJING BASED ON LIFE CYCLE ASSESSMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 118-125. doi: 10.13205/j.hjgc.202209016
    [15]CHEN Kunyang, WANG Jiayuan, YU Bo, DUAN Huabo, WU Huanyu. ENVIRONMENTAL IMPACT EVALUATION OF RESIDUAL MUD FROM SUBWAY ENGINEERING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 191-198. doi: 10.13205/j.hjgc.202202029
    [16]XU Xiaozhu, ZHANG Yun, GAO Qiufeng, XU Yurong, WANG Zhanbo. LIFE CYCLE ASSESSMENT OF HYDRODESULFURIZATION WASTE METAL CATALYST RECOVERY PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 185-190. doi: 10.13205/j.hjgc.202208026
    [17]XIE Chao, LV Bin, WANG Si-si, WANG Pei-jun. REVIEW ON RESOURCE AND ENVIRONMENTAL IMPACT ASSESSMENT OF PERMEABLE PAVEMENT BASED ON LIFE CYCLE THINKING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 197-202,44. doi: 10.13205/j.hjgc.202108027
    [18]LIU Yu-tong, ZHANG Yun, HOU Hao-chen, GAO Qiu-feng, XU Xiao-zhu. LIFE CYCLE ASSESSMENT OF HIGH PURITY MAGNESIUM PRODUCTION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 187-191. doi: 10.13205/j.hjgc.202106028
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.1 %FULLTEXT: 16.1 %META: 79.7 %META: 79.7 %PDF: 4.2 %PDF: 4.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 39.8 %其他: 39.8 %上海: 2.5 %上海: 2.5 %北京: 0.8 %北京: 0.8 %南京: 0.8 %南京: 0.8 %台州: 0.8 %台州: 0.8 %合肥: 0.8 %合肥: 0.8 %常德: 0.8 %常德: 0.8 %张家口: 1.7 %张家口: 1.7 %成都: 1.7 %成都: 1.7 %扬州: 1.7 %扬州: 1.7 %昆明: 0.8 %昆明: 0.8 %杭州: 2.5 %杭州: 2.5 %武汉: 0.8 %武汉: 0.8 %济南: 0.8 %济南: 0.8 %深圳: 0.8 %深圳: 0.8 %湖州: 1.7 %湖州: 1.7 %漯河: 2.5 %漯河: 2.5 %芒廷维尤: 30.5 %芒廷维尤: 30.5 %贵阳: 0.8 %贵阳: 0.8 %运城: 2.5 %运城: 2.5 %遵义: 0.8 %遵义: 0.8 %郑州: 0.8 %郑州: 0.8 %重庆: 2.5 %重庆: 2.5 %其他上海北京南京台州合肥常德张家口成都扬州昆明杭州武汉济南深圳湖州漯河芒廷维尤贵阳运城遵义郑州重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (12) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return