Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LI Haihua, XIAO Baozeng, JIN Kaili, CHEN Zihan, YU Lu. CONSTUCTION AND COMPARATIVE ANALYSIS OF WATER QUALITY PREDICTION MODELS OF THE SANMENXIA RESERVOIR OF THE YELLOW RIVER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 1-7. doi: 10.13205/j.hjgc.202412001
Citation: MENG Haibo, LI Jiannan, FENG Jing, YE Bingnan, LI Peiqi, XU Han. Discussion on intelligent monitoring technology of biogas engineering and construction of intelligent control system[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 185-194. doi: 10.13205/j.hjgc.202501020

Discussion on intelligent monitoring technology of biogas engineering and construction of intelligent control system

doi: 10.13205/j.hjgc.202501020
  • Received Date: 2024-02-28
  • Accepted Date: 2024-04-23
  • Rev Recd Date: 2024-04-10
  • Available Online: 2025-03-21
  • Publish Date: 2025-03-21
  • Biogas engineering is a rural energy project aiming at developing and utilizing livestock manure to achieve a virtuous cycle of agricultural ecology. Intelligent monitoring technology can improve the stability of engineering operations by collecting and monitoring various indicators during the operation process of biogas engineering. This article analyzes the main monitoring technologies, automation control technologies, and equipment research and development applications of biogas engineering. The results indicate that the monitoring and control technology of biogas engineering currently has problems such as incomplete monitoring indicators system, low sensor service life, and low automation level; to further improve the intelligence level of biogas engineering, in-depth research should be conducted on the fermentation process mechanism, and the development of high-precision and long-life monitoring sensors suitable for practical biogas engineering should be improved. The application of emerging network technologies such as animal networking in practical engineering should be promoted to improve the efficiency of intelligent operation. Based on the review of biogas engineering monitoring technology, combined with the current relatively mature technology, this paper took the PLC control system as an example to build a set of reliable, feasible, low-cost, and easy to promote biogas engineering intelligent monitoring systems, to build a set of intelligent biogas engineering monitoring systems to achieve the monitoring of various indicators of the biogas engineering system, automatic feeding, heating, stirring, etc. The operation stability of the whole system is improved, which provides a reference for the intelligent monitoring technology of biogas engineering.
  • [1]
    PRIYANKA J, STEFAN S. Reappraisal of chemical interference in anaerobic digestion processes[J]. Renewable and Sustainable Energy Reviews,2017, 7(5): 1-10.
    [2]
    袁艳文,刘昭,赵立欣, 等.生物质沼气工程发展现状分析[J]. 江苏农业科学,2021,49(6): 28-33.

    YUAN Y W, LIU C, ZHAO L X, et al. Analysis of development status of biomass biogas project[J]. Jiangsu Agricultural Sciences,2021, 49(6): 28-33.
    [3]
    祝其丽,李加群,李江,等.有机废弃物厌氧发酵系统失衡预警研究进展[J].中国沼气,2023,41(5): 3-9.

    ZHU L X, LI J Q, LI J, et al. Research progress on early warning for instability of anaerobic digestion system of organic wastes[J]. China Biogas, 2023,41(5): 3-9.
    [4]
    焦静,郑勇,李尊香,等.厌氧发酵在线监控技术研究进展[J]. 中国农业科技导报, 2021, 23(9): 87-95.

    JIAO J, ZHENG Y, LI Z X, et al. Advances in on-line monitoring technology of anaerobic fermentation[J]. Journal of Agricultural Science and Technology,2021, 23(9): 87-95.
    [5]
    DI W, LEI L, YUN P, et al. State indicators of anaerobic digestion: a critical review on process monitoring and diagnosis[J]. Renewable and Sustainable Energy Reviews,2021(148).
    [6]
    CARINA L G, PAU C L, ALIYEH H, et al. Online monitoring of process parameters during fermentation[J]. Current Developments Biotechnology and Bioengineering, 2022, (117).
    [7]
    于蕾,江皓,钱名宇,等.沼气工程厌氧发酵过程的监测与控制[J].中国沼气,2014,32(6): 59-64.

    YU L, JIANG H, QIAN M Y, et al. Monitor and control of anaerobic fermentation in biogas plant[J]. China Biogas, 2014, 32(6): 59-64.
    [8]
    曹博,刘文评.温度传感器的对比研究[J]. 内江科技,2019,40(9):137,156.

    CAO B, LIU W P. Comparative study of temperature sensors[J]. Neijiang Technology, 2019, 40(9): 137,156.
    [9]
    韩志鑫,冯锦,赵茜.工业铂热电阻检定方法研究综述[J].中国测试,2019,45(8): 25-32.

    HAN Z X, FENG J, ZHAO X. Review of research methods for industrial platinum resistance[J]. China Measurement & Test, 2019, 45(8): 25-32.
    [10]
    胡大海,赵锐,杜刘革,等. 太赫兹平板材料介电常数测试技术[J].微波学报,2016,32(5):1-5.

    HU D H, ZHAO Y, DU L X, et al. The permeability and permittivity measurement technique of flat substrate materials at Terahertz[J]. Journal of Microwaves, 2016,32(5):1-5.
    [11]
    TIMO S, FLORIAN S, CHRISTIAN L, et al. Reliability improvements of thin film platinum resistors on wafer-level and micro-hot-plates at stress temperatures in the range of 140~290 ℃[J]. Microelectronics Reliability,2020,104:113557.
    [12]
    BEHDANI M, KALATEH M M H, SAGHLATOON H, et al. High-resolution dielectric constant measurement using a sensor antenna with an allocated link for data transmission[J]. IEEE Sensors Journal,2020,20(24):14827-14835.
    [13]
    庞雅文,张丛春,雷鹏,等.铂薄膜电阻温度传感器封装研究测控技术[J].测控技术,2021,40(11): 48-56.

    PANG Y W, ZHANG C CH, LEI P, et al. Package of Pt thin film resistance temperature detector[J]. Observation and Control Technology, 2021, 40(11): 48-56.
    [14]
    SHEN A, KIM S B, BAILEY C, et al. Direct write fabrication of platinum-based thick-film resistive temperature detectors[J]. IEEE Sensors Journal,2018,18(22):9105-9111.
    [15]
    彭晨.快速响应型薄膜温度传感器的制备及性能测试[D]. 成都:电子科技大学,2020:6-5. PENG C. Preparation and test of fast response thin film temperature sensor[D]. Cheng Du: University of Electronic Science and Technology of China, 2020:6

    -5.
    [16]
    吴昊,侯彬,洪嘉旺,等.铂薄膜电阻温度传感器玻璃密封材料稳定性能研究[J]. 陶瓷学报,2024. WU H, HOU B, HONG J W, et al. Stability of glass seals for Pt thin-film resistance temperature detector[J]. Journal of Ceramics,2024.
    [17]
    王纪章,茆寒,王旭,等.一种基于红外测温的堆置发酵内部温度测量方法与装置: CN202011450862.6[P]. 2021-04-30. WANG J Z, MAO H, WANG X, et al. The Invention Relates to a Method and Device for Measuring Internal Temperature of Pile Fermentation based on Infrared Temperature Measurement: CN202011450862.6[P]. 2021-04-30.
    [18]
    梁浩,林玉飞,周思邈,等.厌氧消化在线监控技术及发展方向[J]. 农业资源与环境学报,2018,35(3): 208-214.

    LIANG H, LIN Y F, ZHOU S M, et al. Anaerobic digestion on-line monitoring technology and development[J]. Journal of Agricultural Resources and Environment, 2018, 35(3): 208-214.
    [19]
    LIBU M, DOROTA S, RAVINDER D. Metal oxides based electrochemical pH sensors: current progress and future perspectives[J]. Progress in Materials Science, 2020, 109: 100635.
    [20]
    KHAN M I, MUKHERJEE K, SHOUKAT R, et al. A review on pH sensitive materials for sensors and detection methods[J]. Microsystem Technologies, 2017,23(10):401-404.
    [21]
    MANJANKKAL L, SZWAGIERCZAK D, DAHIYA R. Metal oxides based electrochemical pH sensors: current progress and future perspectives[J]. Progress in Materials Science, 2020, 109.
    [22]
    LIBU M, BEATA S, KZYSZTOF Z, et al. Development and characterization of miniaturized LTCC pH sensors with RuO2 based sensing electrodes[J]. Sensors and Actuators B: Chemical, 2016, 223: 641-649.
    [23]
    叶文,王书文,潘梦旭,等.应用于生物发酵在线监测的聚合物pH传感膜[J]. 影像科学与光化学,2016,34(4): 319-328.

    YE W, WANG S W, PAN M X, et al. Polymeric pH sensor film for real-time monitoring in biological culture[J]. Imaging Science and Photochemistry, 2016, 34(4): 319-328.
    [24]
    张晋恒,王烁,马耀宏,等.基于聚对氨基苯酚/还原氧化石墨烯的固态电位型pH传感器[J].分析化学,2022,12(50). ZHANG J H, WANG SH, MA Y H, et al. A solid-state potentiometric pH sensor based on Poly-p-aminophenol functionalized reduced graphene oxide[J]. Chinese Journal of Analytical Chemistry, 2022,12

    (50).
    [25]
    李曼曼,吕旖雯,居家奇,等.金属氧化物pH传感器的研究进展[J].微纳电子技术,2023,60(2). LI M M, LU Q W, JU J Q, et al. Research progress of metal oxide pH sensors[J]. Micronanoelectronic Technology, 2023,60

    (2).
    [26]
    陈琳,李东,文昊深,等.蔬菜废弃物中温厌氧发酵酸化失稳预警指标筛选[J].农业工程学报,2017,33(1): 225-230.

    CHEN L, LI D, WEN H S, et al. Screening of early warning indicators of instability in anaerobic digestion of vegetable waste under mesophilic condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(1): 225-230.
    [27]
    陈凌霞,张燕燕,赵红,等. 污水氧化还原电位及总固体含量的在线监测初探[J].中国沼气,2023,41(3): 55-58.

    CHEN L X, ZHANG Y Y, ZHAO H, et al. The research on on-line determination of re-dox potential and liquid consistency for municipal sewage[J]. China Biogas, 2023, 41(3): 55-58.
    [28]
    刘筱雪,方帷,李晓,等. 氧化还原电位去极化法及铂电极直接测定法对比研究[J].分析科学学报,2017,33(6): 83-86.

    LIU X X, FANG W, LI X, et al. Comparative study of the depolarization curve method and platinum electrode direct determination method[J].Journal of Analytical Science, 2017,33(6): 83-86.
    [29]
    雷丽江,罗勇钢,孙颖奇. 一种新型ORP电极的制备与性能分析[J].传感器与微系统,2020,39(7): 41-43

    ,47. LEI L J, LUO Y G, SUN Y Q. Preparation and property analysis of a novel ORP electrode[J]. Transducer and Microsystem Technologies, 2020,39(7): 41-43,47.
    [30]
    WEI F, XUEDONG Z, PANYUE ZH, et al. Overview of key operation factors and strategies for improving fermentative volatile fatty acid production and product regulation from sewage sludge[J]. Journal of Environmental Sciences, 2020, 87: 93-111.
    [31]
    江伟.废水中低浓度挥发性脂肪酸测定方法及其应用研究[D]. 重庆:重庆大学, 2010:6-5. JIANG W. The Method for Measuring the Low Concentrations of Volatile Fatty Acid (VFA) in Sewage and its Application[D]. Chongqing: Chongqing University, 2010:6

    -5.
    [32]
    XIANG Y l, YUE F, JIAN Lu D, et al. Model-based mid-infrared spectroscopy for on-line monitoring of volatile fatty acids in the anaerobic digester[J]. Environmental Research, 2022, 20(6):112-120.
    [33]
    吴树彪,陈新颖,刘良,等.规模化沼气工程总挥发酸与碳酸氢盐自动滴定装置[J].农业机械学报,2015,46(9): 217-222

    ,166. WU S B, CHEN X Y, LIU L, et al. Automatic titrator for measurement of total volatile fatty acids and Total inorganic carbon in scaled biogas project[J]. Transactions of the Chinese Society of Agricultural Machinery,2015, 46(9): 217-222, 166.
    [34]
    XIAO Y L, MUHAMMAD U, El S S, et al. Development of an innovative MFC-biosensor for real-time monitoring of anaerobic digestion for biogas production: controlled substrate feeding strategy[J]. Journal of Environmental Chemical Engineering, 2021, 9: 106703.
    [35]
    陈冠英,刘凡,杨瑞涵,等.大型沼气示范工程湿法发酵系统运行技术模式研究[J]. 安徽农业科学,2023,51(12): 176-180

    ,184. CHEN G Y, LIU F, YANG R H, et al. Research on the operation technology mode of wet fermentation system in large-scale biogas demonstration project[J]. Anhui Agricultural Sciences,2023, 51(12): 176-180, 184.
    [36]
    LEI L, QING M H, YUN M W, et al. Early warning indicators for monitoring the process failure of anaerobic digestion system of food waste[J]. Bioresource Technology, 2014, 171: 491-494.
    [37]
    何清明.餐厨垃圾厌氧消化过程稳定性检测系统开发与研究[D]. 重庆:重庆大学,2014: 6-5. HE Q M. Research and Design of Process Stability Detection System in Anaerobic Digestion of Food Wastes[D]. Chongqing: Chongqing University, 2014: 6

    -5.
    [38]
    金光贤,孟辉,贾光辉.激光甲烷传感器在瓦斯抽放管道在线监测的应用[J]. 山东煤炭科技, 2018, (11): 55-57. JIN G X, MENG H, JIA G H, Application of laser methane sensor in on-line monitoring of gas drainage pipeline[J]. Shandong Coal Science and Technology, 2018

    , (11): 55-57.
    [39]
    诸刚.沼气站甲烷实时监测报警系统的开发[J]. 中国沼气,2014,32(3): 55-58.

    ZHU G. Development of real-time methane monitoring and alarm system for biogas station[J]. China Biogas, 2014, 32(3): 55-58.
    [40]
    闫海燕.光干涉式甲烷测定器的原理及换算方法[J]. 计量与测试技术,2009,36(10): 35-37.

    YAN H Y. Optical interferometric measuring methane conversion principle and method[J]. Metrology and Testing Technology, 2009, 36(10): 35-37.
    [41]
    熊友辉,刘志强,何涛.甲烷检测仪在沼气服务体系中的应用[J].中国沼气,2009,27(4): 22-24

    , 27. XIONG Y H, LIU Z Q, HE T. Application of methane detector in biogas service system[J]. China Biogas, 2009, 27(4): 22-24, 27.
    [42]
    谭超. 燃煤电厂碳排放监测方法研究[D].广州:华南理工大学, 2018. TAN C. Study on Monitoring Methods of Carbon Emission in Coal Fired Power Plants[D]. Guangzhou: South China University of Technology, 2018.
    [43]
    曾永达,黄国家,李悦.硫化氢气体检测方法及其传感器研究发展现状[J]. 理化检验(化学分册),2019,55(7): 827-832. ZENG Y D, HUANG G J, LI Y. Research development status of hydrogen sulfide gas detection methods and sensors[J]. Physical and Chemical Examination (Chemical Volume), 2019, 55(7): 827-832.
    [44]
    LEIPZING M. Electronic nose technology for reactor state and biogas quality assessment in anaerobic digestion[C]//Leipzig:2nd Conference on Monitoring & Process Control of Anaerobic Digestion Plants, 2015: 1.
    [45]
    辛睿德,郑勇,邹明宏,等.沼气发酵监控系统的发展现状与趋势[J]. 广东农业科学,2013,40(2): 182-184.

    XIN R D, ZHENG Y, ZOU M H. Development status and trends of the biogas fermentation monitoring systems[J]. Guangdong Agricultural Sciences, 2013, 40(2): 182-184.
    [46]
    JAMES D J R. System and Method for Converting Organic Waste Methane and Other Useful Products: US20150111272A1[P].
    [47]
    张影微,文哲,李岩,等. 利用PLC和组态软件构建沼气生产自动控制系统研究[J]. 农机化研究,2014,36(3): 216-219.

    ZHANG Y W, LI W ZH, LI Y, et al. Automatic control system of biogas production of anaerobic fermentation process based on PLC and force control[J]. Journal of Agricultural Mechanization Research, 2014, 36(3): 216-219.
    [48]
    王玉鹏.基于PLC的秸秆厌氧发酵在线监控系统[J]. 黑龙江科学,2017,8(6). WANG Y P. Straw anaerobic fermentation online control system based on PLC[J]. Heilongjiang Science, 2017, 8

    (6).
    [49]
    李秋燕,吴树彪,庞昌乐,等.两相厌氧发酵过程监控系统的设计[J]. 云南农业大学学报,2012,27(3): 418-423.

    LI Q Y, WU SH B, PANG CH L, The design of an online monitoring and control system for two-phase anaerobic digestion[J]. Journal of Yunnan Agricultural University, 2012, 27(3): 418-423.
    [50]
    尹传斌,杨文秀.基于ADAM4000系列模块的数据采集与监控系统的实现[J]. 科技与企业,2012,(13):128-129,131.

    YIN CH B, YANG W X. Implementation of data acquisition and monitoring system based on ADAM4000 series module[J]. Technology and Enterprise, 2012, (13):128-129,131.
    [51]
    HUI M L, XIAO B W S. Vehicle control strategies analysis based on PID and fuzzy logic control[J]. Procedia Engineering, 2016.
    [52]
    望翔,石超,覃涛.基于单片机的智能沼气控制系统设计[J]. 装备制造技术,2021(9): 73-76,91.

    WANG X, SHI CH, QIN T. Development of intelligent biogas control system based on single chip microcomputer[J]. Equipment Manufacturing Technology, 2021(9): 73-76, 91.
    [53]
    刘馨月,黄非凡,隋梦桐,等.模块化沼气池无线监测系统的研究[J]. 科技创新与应用,2017(31): 30-31. LIU X Y, HUANG F F, SUI M T, et al. Research on wireless monitoring system of modular biogas digester[J]. Technology Innovation and Application, 2017

    (31): 30-31.
    [54]
    WEN Q W, MING J L, JIA Q G, et al. A feedforward-feedback control strategy based on artificial neural network for solar receivers[J]. Applied Thermal Engineering, 2023, 224: 120069.
    [55]
    郭雨桐.基于神经网络的沼气厌氧发酵pH控制方法研究[D]. 武汉:华中科技大学,2016:6-15. GUO Y T. Research on pH Control in Biogas Anaerobic Fermentation Based on Neural Network[D]. Wuhan: Huazhong University of Science and Technology, 2016: 6

    -15.
    [56]
    卢照昕.基于模糊神经网络PID控制的厌氧发酵罐研究[D]. 哈尔滨:东北农业大学,2020:6-23. LU ZH X. Study of Anaerobic Fermentation Reactor Based on Fuzzy Neural Network PID Control[D]. Harbin: Northeast Agricultural University, 2020:6

    -23.
    [57]
    ANAND S R OMAIR M R N, SHAW A G. Renewable energy system for industrial internet of things model using fusion-AI[J]. Applications of AI and IOT in Renewable Energy, 2022: 107-128.
    [58]
    席瑞鑫,郞曼.基于GPRS的沼气工程物联网监控系统[J].通信电源技术,2018,35(12):162-163.

    XI R X, LANG M. Monitoring system of biogas project based on GPRS[J]. Telecom Power Technology, 2018, 35(12): 162-163.
  • Relative Articles

    [1]YU Yiqi, CHEN Nengwang, YU Qibiao, LI Shaobin, ZHANG Dongzhan, QU Fan. SELECTING TRANSFER CONDITIONS BASED ON XGBOOST TO IMPROVE WATER QUALITY PREDICTION CAPACITY OF THE LSTM MODEL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 223-234. doi: 10.13205/j.hjgc.202401029
    [2]LI Youjie, ZHAO Shunyu, YANG Ping, WANG Yelin. A REVIEW OF HYBRID FORECASTING METHODS FOR ATMOSPHERIC POLLUTANTS IN SHORT-TERM BASED ON DATA DECOMPOSITION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 213-224. doi: 10.13205/j.hjgc.202304029
    [3]WANG Qingrong, WANG Junjie, ZHU Changfeng, HAO Fule. CARBON EMISSION PREDICTION OF TRANSPORTATION INDUSTRY BASED ON VMD AND SSA-LSSVM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 124-132. doi: 10.13205/j.hjgc.202310016
    [4]YU Feng, WANG Kejia, ZHANG Wenlong, LI Yi. PREDICTION OF COAGULANT DOSAGE FOR IN-SITU TURBIDITY CONTROL IN WATER ECOLOGICAL RESTORATION BASED ON BP NEURAL NETWORK OPTIMIZED BY GENETIC ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 154-163. doi: 10.13205/j.hjgc.202304022
    [5]ZHOU Jianguo, WANG Jianyu, WEI Siti. PREDICTION OF PM2.5 AND OZONE CONCENTRATION BASED ON VMD-CEEMD DECOMPOSITION AND LSTM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 157-165,221. doi: 10.13205/j.hjgc.202306021
    [6]LI Yuanyuan, LIU Hailong. PREDICTION OF TOTAL PHOSPHORUS IN RIVERS BASED ON ATTENTION MECHANISM OF TEMPORAL CONVOLUTIONAL NETWORKS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 163-171. doi: 10.13205/j.hjgc.202305022
    [7]GUO Zirui, CHEN Zhiqiang, CHI Riguang, SHEN Aihua. PREDICTION OF POLYHYDROXYALKANOATE (PHA) PRODUCTION UTILIZING FOOD WASTE BASED ON GA-BP NEURAL NETWORK METHOD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 166-173. doi: 10.13205/j.hjgc.202204024
    [8]XUE Tong-lai, ZHAO Dong-hui, HAN Fei. SVR WATER QUALITY PREDICTION MODEL BASED ON GA OPTIMIZATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 123-127. doi: 10.13205/j.hjgc.202003021
    [9]LIANG Tao, XIE Gao-feng, MI Da-bin, JIANG Wen. PREDICTION OF PM10 CONCENTRATION BASED ON CEEMDAN-SE AND LSTM NEURAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 107-113. doi: 10.13205/j.hjgc.202002015
    [10]YU Shen-ting, LIU Ping. LONG SHORT-TERM MEMORY-CONVOLUTION NEURAL NETWORK (LSTM-CNN) FOR PREDICTION OF PM2.5 CONCENTRATION IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 176-180,66. doi: 10.13205/j.hjgc.202006029
    [16]Ren Jinxia Yu Zhiwu You Xin, . MODEL FOR WATER QUALITY EVALUATION BASED ON WAVELET NEURAL NETWORK OF ADAPTIVE GENETIC ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 144-148. doi: 10.13205/j.hjgc.201505031
  • Cited by

    Periodical cited type(18)

    1. 李振国. 污水厂增加和完善硝化功能的工艺改造分析. 造纸装备及材料. 2024(02): 133-135 .
    2. 田文瑞,宿文娟,赵淑铭. 厌氧氨氧化技术的研究进展. 节能. 2023(03): 90-93 .
    3. 赵舒. 厌氧氨氧化在废水处理领域中的应用. 辽宁化工. 2023(12): 1860-1862+1866 .
    4. 周铉凯,暴瑞玲,阮爱东,马小通. COD对连续流厌氧氨氧化混菌体系氮素转化和菌群结构的影响. 当代化工. 2023(12): 2895-2900 .
    5. 沈东. 基于厌氧氨氧化反应的污水处理工艺探究. 节能与环保. 2021(03): 72-73 .
    6. 孙梦侠,张凯,李军,梁东博,王佳. EGSB-CANON工艺启动及动力学特性. 中国环境科学. 2021(07): 3201-3211 .
    7. 秦彦荣,袁忠玲,张明,张民安,刘安迪,付雪,马娟,陈永志. 部分亚硝化-厌氧氨氧化协同反硝化处理生活污水脱氮除碳. 环境科学. 2021(10): 4853-4863 .
    8. 李进,吴莉娜,闫志斌,苏柏懿,王春艳. 主流部分亚硝化-厌氧氨氧化工艺脱氮功能菌群的控制策略研究. 环境工程. 2021(08): 45-54+61 . 本站查看
    9. 马小通,暴瑞玲,阮爱东,罗嘉西. 连续流MBBR厌氧氨氧化反应器中絮状污泥与生物膜菌群分布特征. 当代化工. 2021(12): 2773-2777 .
    10. 张树德,李艳梅,杨忠平,宁丹,杨文杰,王占生. 部分亚硝化工艺处理稀土尾水应用研究. 给水排水. 2021(S2): 284-288 .
    11. 张星星,王昕竹,印雯,陈亚,徐乐中,盛铭军,郭永福,吴鹏. 基于厌氧氨氧化技术处理市政污水的研究进展. 工业水处理. 2020(01): 1-7 .
    12. 刘小锦,刘琪,刘广青,苏本生,王倩. 升流式生物膜反应器中CANON工艺处理中低浓度氨氮废水的快速启动. 环境工程学报. 2020(06): 1545-1553 .
    13. 赵婉情,李柏林,王伟,李晔,王恒,汪月,梁亚楠. 颗粒-絮状污泥耦合单级自养脱氮系统的脱氮性能分析. 环境工程. 2020(09): 43-47+199 . 本站查看
    14. 赵静,姜天. ANAMMOX工艺的影响因素研究进展. 化工管理. 2019(31): 46-47 .
    15. 马志洋. 厌氧氨氧化污水处理工艺及其实际应用研究进展. 中国金属通报. 2019(09): 122+124 .
    16. 刘川续. 厌氧氨氧化污水处理工艺及其实际应用研究进展. 环境与发展. 2019(10): 80-81 .
    17. 牛宇锟,赵博玮,岳秀萍,周爱娟. 木质框架土壤渗滤系统中氨氮沿程变化的半经验公式. 科学技术与工程. 2019(34): 426-432 .
    18. 耿震,王罕. 餐厨废弃物厌氧消化沼液处理工艺设计. 中国给水排水. 2019(22): 62-65 .

    Other cited types(21)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.3 %FULLTEXT: 13.3 %META: 81.3 %META: 81.3 %PDF: 5.5 %PDF: 5.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 85.9 %其他: 85.9 %北京: 3.1 %北京: 3.1 %南昌: 0.4 %南昌: 0.4 %南通: 0.4 %南通: 0.4 %常德: 0.4 %常德: 0.4 %广州: 0.8 %广州: 0.8 %张家口: 0.4 %张家口: 0.4 %杭州: 0.4 %杭州: 0.4 %武汉: 0.8 %武汉: 0.8 %济南: 0.4 %济南: 0.4 %温州: 0.4 %温州: 0.4 %石家庄: 0.4 %石家庄: 0.4 %芒廷维尤: 3.1 %芒廷维尤: 3.1 %荆门: 0.8 %荆门: 0.8 %西宁: 0.4 %西宁: 0.4 %郑州: 0.8 %郑州: 0.8 %青岛: 1.2 %青岛: 1.2 %其他北京南昌南通常德广州张家口杭州武汉济南温州石家庄芒廷维尤荆门西宁郑州青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (17) PDF downloads(0) Cited by(39)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return