Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 43 Issue 2
Feb.  2025
Turn off MathJax
Article Contents
JIAO Junxia, SHI Jin, ZHOU Jiaogen, LEI Qiuliang. Effects of urban circle and water management measures on spatial distribution pattern of inorganic nitrogen content in small water bodies: A case study of Changsha, Hunan Province[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(2): 11-20. doi: 10.13205/j.hjgc.202502002
Citation: JIAO Junxia, SHI Jin, ZHOU Jiaogen, LEI Qiuliang. Effects of urban circle and water management measures on spatial distribution pattern of inorganic nitrogen content in small water bodies: A case study of Changsha, Hunan Province[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(2): 11-20. doi: 10.13205/j.hjgc.202502002

Effects of urban circle and water management measures on spatial distribution pattern of inorganic nitrogen content in small water bodies: A case study of Changsha, Hunan Province

doi: 10.13205/j.hjgc.202502002
  • Received Date: 2023-12-05
  • Accepted Date: 2024-04-20
  • Rev Recd Date: 2024-02-10
  • Understanding the spatial variation of inorganic nitrogen (DIN) and its driving factors in urban small water bodies is helpful for the scientific development of urban small water pollution prevention and control programs. Taking Changsha as the research area, DIN content in 68 small water bodies was randomly sampled and monitored, and spatial differentiation of NH4+-N, NO3--N and DIN content and its influencing factors in small water bodies were discussed. Three circles were divided by their distance from the urban center as <5 km, 5 km to 10 km, and >10 km. The results showed that the DIN content of small water bodies in the study area had great variability (with a CV value up to 178.42%), and 7.35% were in NH4+-N pollution state. The average NH4+-N, NO3--N and DIN contents in small water bodies in the >10 km circle was higher than those in the <5 km, and 5 km to 10 km circles, which indicated that the NH4+-N, NO3--N and DIN content of small water bodies increased with distance from the urban center. The average NH4+-N and DIN content of small aquaculture water in the suburban area was higher than that of ecological protection, ecological restoration and ecological degradation in the urban center. Further analysis of hierarchical variance decomposition showed that the total contributions of the circle layer and water management mode to the variance variation of NH4+-N, NO3--N and DIN were 59.5%, 49.2% and 68.5%, respectively, which further confirmed that the distance to the urban center and water management mode were the main factors affecting the variation of DIN component content in the study area. Moreover, the urban development trend and the implementation of water environment management measures were not coordinated, and small water bodies were possessing the risk of transferring from urban areas to suburban areas, and it was necessary to further strengthen the overall coordination and planning for risk control.
  • loading
  • [1]
    DOWNING J A, PRAIRIE Y T, COLE J J, et al. The global abundance and size distribution of lakes, ponds, and impoundments[J]. Limnology and Oceanography, 2006, 51: 2388-2397.
    [2]
    吕明权, 吴胜军, 马茂华, 等. 中国小型水体空间分布特征及影响因素[J]. 中国科学: 地球科学, 2022(8): 052. LÜ M Q, WU S J, MA M H, et al. Spatial distribution and influencing factors of small water bodies in China[J]. Science China: Earth Sciences, 2022

    (8):052.
    [3]
    崔丽娟, 雷茵茹, 张曼胤, 等. 小微湿地研究综述: 定义、类型及生态系统服务[J]. 生态学报, 2021, 41(5): 2077-2085.

    CUI L J, LEI Y R, ZHANG M Y, et al. Review on small wetlands: definition, typology and ecological services[J]. Acta Ecologica Sinica, 2021, 41(5):2077-2085.
    [4]
    DOWNING J A. Emerging global role of small lakes and ponds: little things mean a lot[J]. Limnetica, 2010, 29(1): 9-24.
    [5]
    FAIRCHILD G W, VELINSKY D J. Effects of small ponds on stream water chemistry[J]. Lake and Reservoir Management, 2006, 22(4): 321-330.
    [6]
    吴雅丽, 许海, 杨桂军, 等. 太湖水体氮素污染状况研究进展[J]. 湖泊科学, 2014, 26(1): 19-28.

    WU Y L, XU H, YANG G J, et al. Research progress on nitrogen pollution in the water of Taihu Lake[J]. Journal of Lake Sciences, 2014, 26(1):19-28.
    [7]
    冼超凡, 潘雪莲, 甄泉, 等. 城市生态系统污染氮足迹与灰水足迹综合评价[J]. 环境科学学报, 2019,39(3): 985-995.

    XIAN C F, PAN X L, ZHEN Q, et al. Integrated assessments of nitrogen pollution footprints and grey water footprints in the urban ecosystem[J]. Acta Scientiae Circumstantiae, 2019, 39(3):985-995.
    [8]
    刘洁岭, 何洋. 城市景观水体富营养化现状及成因[J]. 绿色科技, 2017(12): 73-74. LIU J L, HE Y. Discussion on present situation and formation of eutrophication in urban landscape water[J]. Journal of Green Science and Technology, 2017

    (12):73-74.
    [9]
    YU C, HUANG X, CHEN H, et al. Managing nitrogen to restore water quality in China[J]. Nature, 2019, 567(7749): 516-520.
    [10]
    FOCHT D D, VERSTRAETE W. Biochemical ecology of nitrification and denitrification[J]. Advances in Microbiological Ecology, 1977, 1: 135-214.
    [11]
    BAUZA J F, MORELL J M, CORREDOR J E. Biogeochemistry of nitrous oxide production in the red mangrove (Rhizophora mangle) forest sediments[J]. Estuarine, Coastal and Shelf Science, 2002, 55(5): 697-704.
    [12]
    RAVISHANKARA A R, DANIEL J S, PORTMANN R W. Nitrous oxide(N2O): the dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326(5949): 123-125.
    [13]
    LAKSHMAN S V J, JAYASANKAR C K. Optical absorption spectra of the tripositive thulium ion in certain nitrate complexes[J]. Journal of Physics C: Solid State Physics, 1984, 17(16).
    [14]
    陈瑞明. 铵态氮和亚硝酸盐氮对鳜鱼苗的急性毒性试验[J]. 水利渔业, 1998(1): 17-20. CHEN R M. Acute toxicity of ammonium and nitrite to mandarin fish fry[J]. Reservoir Fisheries, 1998

    (1):17-20.
    [15]
    李政, 何欢祺, 张天旭, 等. 典型底栖生物泥鳅的急性毒性物种敏感性评价[J]. 生态与农村环境学报, 2019, 35(3): 392-397.

    LI Z, HE H Q, ZHANG T X, et al. Species sensitivity evaluation of misgumus anguillicadatus[J]. Journal of Ecology and Rural Environment, 2019, 35(3):392-397.
    [16]
    LIANG K, JIANG Y, QI J, et al. Characterizing the impacts of land use on nitrate load and water yield in an agricultural watershed in Atlantic Canada[J]. Science of the Total Environment, 2020, 729: 138793.
    [17]
    张懿文, 罗建中, 陈宇阳. 我国水体中硝酸盐的污染现状及危害[J]. 广州化工, 2015(4): 99-100. ZHAGN Y W, LUO J Z, CHEN Y Y. The pollution situation and harm of nitrate in water of China[J]. Guangdong Chemical Industry, 2015

    (4):99-100.
    [18]
    DOWNING J A, MCCLAIN M, TWILLEY R, et al. The impact of accelerating land-use change on the N-Cycle of tropical aquatic ecosystems: current conditions and projected changes[J]. Biogeochemistry, 1999, 46(1/2/3): 109-148.
    [19]
    周念清, 王燕, 钱家忠, 等. 湿地氮循环及其对环境变化影响研究进展[J]. 同济大学学报(自然科学版), 2010, 38(6): 865-869. ZHOU N Q, WANG Y, QIAN J Z, et al. Advances in research on nitrogen cycle in wetlands and its influence on Environmental Change[J]. Journal of Tongji University (Natural Science), 2010, 38(6):865-869.
    [20]
    李峰平, 魏红阳, 马喆, 等. 人工湿地植物的选择及植物净化污水作用研究进展[J]. 湿地科学, 2017, 15(6): 849-854.

    LI F P, WEI H Y, MA Z, et al. Research progress of selection of plants for constructed wetlands and effect of plants’ purification on sewage[J]. Wetland Science, 2017, 15(6):849-854.
    [21]
    LI Y Y, JIAO J X, WANG Y, et al. Characteristics of nitrogen loading and its influencing factors in several typical agricultural watersheds of subtropical China[J]. Environmental Science and Pollution Research International, 2015, 22(3): 1831-1840.
    [22]
    YIN C Q, ZHAO M, JIN W G, et al. A multi-pond system as a protective zone for the management of lakes in China[J]. Hydrobiologia, 1993, 251(1): 321-329.
    [23]
    CHEN W J, HE B, DANIEL N, et al. Farm ponds in southern China: challenges and solutions for conserving a neglected wetland ecosystem[J]. Science of the Total Environment, 2019, 659: 1322.
    [24]
    申雅莉, 周脚根, 彭佩钦, 等. 亚热带源头流域梯级池塘氮磷含量的时空变异及其影响因素[J]. 农业环境科学学报, 2020, 39(10): 2420-2428.

    SHEN Y L, ZHOU J G, PENG P Q, et al. Spatio-temporal variation of nitrogen and phosphorus contents in cascade ponds in subtropical headstream watershed and its influencing factors[J]. Journal of Agro-Environment Science, 2020, 39(10):2420-2428.
    [25]
    ZHOU J G, WANG Y, LEI Q L. Using bioinformatics to quantify the variability and diversity of the microbial community structure in pond ecosystems of a subtropical catchment[J]. Current Bioinformatics, 2020, 15: 1178-1186.
    [26]
    张敏, 谢平, 徐军, 等. 大型浅水湖泊:巢湖内源磷负荷的时空变化特征及形成机制[J]. 中国科学(D辑) 地球科学, 2005, (增刊Ⅱ): 63-72. ZHANG M, XIE P, XU J, et al. Temporal and spatial variation characteristics and formation mechanism of endogenous phosphorus load in Chaohu Lake, a large shallow lake[J]. Science in China Ser. D Earth Sciences, 2005

    , (Supplement Ⅱ):63-72.
    [27]
    秦伯强, 朱广伟, 张路, 等. 大型浅水湖泊沉积物内源营养盐释放模式及其估算方法:以太湖为例[J]. 中国科学(D辑) 地球科学, 2005, (增刊Ⅱ): 33-44. QIN B Q, ZHU G W, ZHANG L, et al. Models and estimation methods of endogenous nutrient release from sediments of large shallow lakes: a case study of Taihu Lake[J]. Science in China Ser. D Earth Sciences, 2005

    , (Supplement Ⅱ):33-44.
    [28]
    李媛媛, 王华, 袁伟皓, 等. 降雨变化对鄱阳湖区乐安河流域非点源产污的影响[J]. 环境工程, 2023, 41(2): 16-23.

    LI Y Y, WANG H, YUAN W H, et al. Impact of rainfall variation on non-point source pollution in Le’an River watershed, Poyang Lake basin[J]. Environmental Engineering, 2023, 41(2):16-23.
    [29]
    潘成荣, 汪家权, 郑志侠, 等. 巢湖沉积物中氮与磷赋存形态研究[J]. 生态与农村环境学报, 2007, 23(1): 43-47.

    PAN C R, WANG J Q, ZHEGN Z X, et al. Forms of phosphorus and nitrogen existing in sediments in Chaohu Lake[J]. Journal of Ecology and Rural Environment, 2007, 23(1):43-47.
    [30]
    金相灿, 庞燕, 王圣瑞, 等. 长江中下游浅水湖沉积物磷形态及其分布特征研究[J]. 农业环境科学学报, 2008, 27(1): 279-285.

    JIN X C, PANG Y, WANG S R, et al. Phosphorus forms and its distribution character in sediment of shallow lakes in the middle and lower reaches of the Yangtze River[J]. Journal of Agro-Environment Science, 2008, 27(1):279-285.
    [31]
    梁芳源, 李鹏, 程维金, 等. 武汉城市湿地景观格局及生态系统服务功能演变轨迹与驱动机制[J]. 环境工程, 2023, 41(1): 105-111.

    LIANG F Y, LI P, CHENG W J, et al. Driving Mechanism of wetland landscape pattern and ecosystem services in Wuhan[J]. Environmental Engineering, 2023, 41(1):105-111.
    [32]
    徐红灯, 席北斗, 翟丽华. 沟渠沉积物对农田排水中氨氮的截留效应研究[J]. 农业环境科学学报, 2007, 26(5): 1924-1928.

    XU H D, XI B D, ZHAI L H. Interception effect of ditch sediment on NH+4-N in agricultural drainage ditch[J]. Journal of Agro-Environment Science, 2007, 26(5):1924-1928.
    [33]
    LAI J S, ZOU Y, ZHANG J L, et al. Generalizing hierarchical and variation partitioning in multiple regression and canonical analysis using the Rdacca.hp R Package[J]. Methods in Ecology and Evolution, 2022, 13: 782-788.
    [34]
    苏泳松. 广州海珠国家湿地公园水体氮素特征及其环境效应[D]. 广州:广州大学, 2022. SU Y S. Nitrogen Characteristics and Environmental Effects of Water in Guangzhou Haizhu National Wetland Park[D]. Guangzhou: Guangzhou University, 2022.
    [35]
    康鹏亮, 黄廷林, 张海涵, 等. 西安市典型景观水体水质及反硝化细菌种群结构[J]. 环境科学, 2017, 38(12): 5174-5183.

    KANG P L, HUANG T L, ZHANG H H, et al. Water quality and diversity of denitrifier community structure of typical scenic water bodies in Xi’an[J]. Environmental Science, 2017, 38(12):5174-5183.
    [36]
    李如忠, 陈慧, 刘超, 等. 合肥环城公园景观水体水质特征及环境质量评价[J]. 环境科学学报, 2020, 40(3): 1121-1129.

    LI R Z, CHEN H, LIU C, et al. Water quality characteristics and environmental quality assessment of landscape water in the round-city-park in Hefei[J]. Acta Scientiae Circumstantiae, 2020, 40(3):1121-112.
    [37]
    李劢, 郭兴芳, 郑兴灿, 等. 城市景观水环境监测及富营养化评价——以天津市5处景观水体为例[J]. 环境保护科学, 2020, 46(6): 129-132

    ,148. LI M, GUO X F, ZHENG X C, et al. Environment monitoring and eutrophication evaluation of urban scenic water body——Taking five scenic water bodies in Tianjin as examples[J]. Environmental Protection Science, 2020, 46(6):129-132, 148.
    [38]
    于洋. 北运河水体中氨氮的氧化过程及微生物响应特征[D]. 北京:首都师范大学, 2012. YU Y. Ammonia Oxidation Process and Microbial Response Characteristics in Beicanal Water[D]. Beijing: Capital Normal University, 2012.
    [39]
    WU Y H, HU Z Y, YANG L Z, et al. The removal of nutrients from non-point source wastewater by a hybrid bioreactor[J]. Bioresource Technology, 2011, 102(3): 2419-2426.
    [40]
    LEE S W, HWANG S J, LEE S B, et al. Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics[J]. Landscape and Urban Planning, 2009, 92(2).
    [41]
    马培, 李新艳, 王华新, 等. 河流反硝化过程及其在河流氮循环与氮去除中的作用[J]. 农业环境科学学报, 2014, 33(4): 623-633.

    MA P, LI X Y, WANG H X, et al. Denitrification and its role in cycling and removal of nitrogen in river[J]. Journal of Agro-Environment Science, 2014, 33(4):623-633.
    [42]
    SONNEVELD B, THOTO F, HOUESSOU D, et al. The tragedy of the inland lakes[J]. International Journal of the Commons, 2019, 13: 1-28.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (75) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return