Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 43 Issue 3
Mar.  2025
Turn off MathJax
Article Contents
WANG Sheng, WANG Li. Bipolar membrane’s mechanisms and its recent advances in wastewater treatment and resource recovery[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(3): 57-69. doi: 10.13205/j.hjgc.202503005
Citation: WANG Sheng, WANG Li. Bipolar membrane’s mechanisms and its recent advances in wastewater treatment and resource recovery[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(3): 57-69. doi: 10.13205/j.hjgc.202503005

Bipolar membrane’s mechanisms and its recent advances in wastewater treatment and resource recovery

doi: 10.13205/j.hjgc.202503005
  • Received Date: 2024-12-10
  • Accepted Date: 2025-02-08
  • Rev Recd Date: 2025-01-30
  • Available Online: 2025-06-07
  • Publish Date: 2025-03-01
  • Bipolar membranes are a unique type of ion exchange membrane composed of cation exchange layers and anion exchange layers, capable of generating protons and hydroxide ions through a hydrolysis mechanism. Bipolar membranes have a wide range of potential applications in various fields, including (bio)chemical industry, food processing, environmental protection, and energy conversion and storage. Particularly, due to their unique structure, bipolar membranes exhibit excellent performance in electrochemical applications such as fuel cells and water electrolysis for hydrogen production. Under reverse bias conditions, bipolar membranes can effectively facilitate the dissociation of water molecules, thereby increasing the efficiency of electrochemical reaction. Bipolar membranes also exhibit great potential in wastewater treatment and resource recovery. Bipolar membrane electrodialysis technology can effectively convert the inorganic salts in high saline wastewater into the corresponding acids and bases to achieve resource recovery and reuse. In addition, the technology can selectively recover ammonia nitrogen. Compared with traditional processes, bipolar membranes show significant technological progress and environmental friendliness. This article revisits the past research related to bipolar membranes, comprehensively elucidates their characteristics, theoretical models, and current applications. In addition, emerging applications and critical challenges of bipolar membrane technologies are discussed to guide future development.
  • loading
  • [1]
    BLOMMAERT M A,AILI D,TUFA R A,et al. Insights and challenges for applying bipolar membranes in advanced electrochemical energy systems[J]. ACS Energy Letters,2021,6(7):2539-2548.
    [2]
    PARNAMAE R,MAREEV S,NIKONENKO V,et al. Bipolar membranes:A review on principles,latest developments,and applications[J]. Journal of Membrane Science,2021,617,118538.
    [3]
    BUI J C,LEES E W,PANT L M,et al. Continuum modeling of porous electrodes for electrochemical synthesis[J]. Chemical Reviews,2022,122(12):11022-11084.
    [4]
    BUI J C,KIM C,KING A J,et al. Engineering catalyst-electrolyte microenvironments to optimize the activity and selectivity for the electrochemical reduction of CO2 on Cu and Ag[J]. Accounts of Chemical Research,2022,55(4):484-494.
    [5]
    SHARIFIAN R,WAGTERVELD R M,DIGDAYA I A,et al. Electrochemical carbon dioxide capture to close the carbon cycle[J]. Energy& Environmental Science,2021,14(2):781-814.
    [6]
    BUI J C,LEES E W,MARIN D H,et al. Multi-scale physics of bipolar membranes in electrochemical processes[J]. Nature Chemical Engineering,2024,1(1):45-60.
    [7]
    MITCHELL J B,CHEN L,LANGWORTHY K,et al. Catalytic proton-hydroxide recombination for forward-bias bipolar membranes[J]. ACS Energy Letters,2022,7(11):3967-3973.
    [8]
    YAN Z,ZHU L,LI Y C,et al. The balance of electric field and interfacial catalysis in promoting water dissociation in bipolar membranes[J]. Energy& Environmental Science,2018,11(8):2235-2245.
    [9]
    DE K R SY F,ZEIGERSON E. Bipolar membranes made of a single polyolephine sheet[J]. Israel Journal of Chemistry,1971,9(4):483-497.
    [10]
    FRILETTE,VINCENT J. Preparation and characterization of bipolar ion exchange membranes[J]. Journal of Physical Chemistry,1956,60(4):435-439.
    [11]
    DAI L P,ZHU H Q,KE X,et al. Removal of hexavalent chromium from aqueous solution using bipolar membrane electrodialysis technique[J]. Environmental Engineering,2021,39(11):89-95. 戴丽萍,朱汉权,柯雄,等. 双极膜电渗析法去除水溶液中的Cr(Ⅵ)[J]. 环境工程,2021,39(11):89-95.
    [12]
    YANG H,LIU Y,HU S,et al. Advanced electrochemical membrane technologies for near-complete resource recovery and zero-discharge of urine:Performance optimization and evaluation[J]. Water Research,2024,263,122175.
    [13]
    XU T W,YANG W H,HE B L. Bipolar membrane water dissociation phenomenon:analysis of physical configuration,ion transfer,and hydrolysis dissociation pressure drop of bipolar membrane[J]. Science in China(Series B). 1999(6):481-488.. 徐铜文,杨伟华,何炳林. 双极膜水解离现象:双极膜的物理构型、离子传递及其水解离压降分析[J]. 中国科学(B辑),1999(6):481-488.
    [14]
    YU W,ZHANG Z,LUO F,et al. Tailoring high-performance bipolar membrane for durable pure water electrolysis[J]. Nature Communications,2024,15(1):10220.
    [15]
    ASHRAFI A M,GUPTA N,NEDELA D. An investigation through the validation of the electrochemical methods used for bipolar membranes characterization[J]. Journal of Membrane Science,2017,544:195-207.
    [16]
    KOVALCHUK V I,ZHOLKOVSKIJ E K,AKSENENKO E V,et al. Ionic transport across bipolar membrane and adjacent Nernst layers[J]. Journal of Membrane Science,2006,284(1/2):255-266.
    [17]
    WILHELM F G,PUNT I,van der Vegt N,et al. Asymmetric bipolar membranes in acid-base electrodialysis[J]. Industrial& Engineering Chemistry Research,2002,41(3):579-586.
    [18]
    BALSTER J,SRINKANTHARAJAH S,SUMBHARAJU R,et al. Tailoring the interface layer of the bipolar membrane[J]. Journal of Membrane Science,2010,365(1/2):389-398.
    [19]
    KROL J J,WESSLING M,STRATHMANN H. Chronopotentiometry and overlimiting ion transport through monopolar ion exchange membranes[J]. Journal of Membrane Science,1999,162(1-2):155-164.
    [20]
    MARTI-Calatayud M C,BUZZI D C,GARCIA-Gabaldon M,et al. Ion transport through homogeneous and heterogeneous ion-exchange membranes in single salt and multicomponent electrolyte solutions[J]. Journal of Membrane Science,2014,466:45-57.
    [21]
    BUTYLSKII D Y,MAREEV S A,PISMENSKAYA N D,et al. Phenomenon of two transition times in chronopotentiometry of electrically inhomogeneous ion exchange membranes[J]. Electrochimica Acta,2018,273:289-299.
    [22]
    CHOI J H,MOON S H. Pore size characterization of cation-exchange membranes by chronopotentiometry using homologous amine ions[J]. Journal of Membrane Science,2001,191(1/2):225-236.
    [23]
    WILHELM F G,van der VEGT N,STRATHMANN H,et al. Current-voltage behaviour of bipolar membranes in concentrated salt solutions investigated with chronopotentiometry[J]. Journal of Applied Electrochemistry,2002,32(4):455-465.
    [24]
    WILHELM F G,van der VEGT N,WESSLING M,et al. Chronopotentiometry for the advanced current-voltage characterisation of bipolar membranes[J]. Journal of Electroanalytical Chemistry,2001,502(1/2):152-166.
    [25]
    HURWITZ H D,DIBIANI R. Experimental and theoretical investigations of steady and transient states in systems of ion exchange bipolar membranes[J]. Journal of Membrane Science,2004,228(1):17-43.
    [26]
    PARK J S,CHILCOTT T C,COSTER H,et al. Characterization of BSA-fouling of ion-exchange membrane systems using a subtraction technique for lumped data[J]. Journal of Membrane Science,2005,246(2):137-144.
    [27]
    ZABOLOTSKII V,SHELDESHOV N,MELNIKOV S. Effect of cation-exchange layer thickness on electrochemical and transport characteristics of bipolar membranes[J]. Journal of Applied Electrochemistry,2013,43(11):1117-1129.
    [28]
    BLOMMAERT M A,VERMAAS D A,IZELAAR B,et al. Electrochemical impedance spectroscopy as a performance indicator of water dissociation in bipolar membranes[J]. Journal of Materials Chemistry A,2019,7(32):19060-19069.
    [29]
    SISTAT P,KOZMAI A,PISMENSKAYA N,et al. Low-frequency impedance of an ion-exchange membrane system[J]. Electrochimica Acta,2008,53(22):6380-6390.
    [30]
    ZABOLOTSKII V,SHELDESHOV N,MELNIKOV S. Heterogeneous bipolar membranes and their application in electrodialysis[J]. Desalination,2014,342:183-203.
    [31]
    GOYAL P,KUSOGLU A,WEBER A Z. Coalescing cation selectivity approaches in ionomers[J]. ACS Energy Letters,2023,8(3):1551-1566.
    [32]
    KUSOGLU A,WEBER A Z. New insights into perfluorinated sulfonic-acid lonomers[J]. Chemical Reviews,2017,117(3):987-1104.
    [33]
    CROTHERS A R,DARLING R M,KUSOGLU A,et al. Theory of multicomponent phenomena in cation-exchange membranes:Part I. thermodynamic model and validation[J]. Journal of the Electrochemical Society,2020,167,013547.
    [34]
    PARASURAMAN A,LIM T M,MENICTAS C,et al. Review of material research and development for vanadium redox flow battery applications[J]. Electrochimica Acta,2013,101:27-40.
    [35]
    BUI J C,LUCAS E,LEES E W,et al. Analysis of bipolar membranes for electrochemical CO2 capture from air and oceanwater[J]. Energy& Environmental Science,2023,16(11):5076-5095.
    [36]
    BUI J C,DIGDAYA I,XIANG C,et al. Understanding multi-ion transport mechanisms in bipolar membranes[J]. ACS Applied Materials& Interfaces,2020,12(47):52509-52526.
    [37]
    DINH H Q,TOH W L,CHU A T,et al. Neutralization short-circuiting with weak electrolytes erodes the efficiency of bipolar membranes[J]. ACS Applied Materials& Interfaces,2023,15(3):4001-4010.
    [38]
    PARNAMAE R,TEDESCO M,WU M,et al. Origin of limiting and overlimiting currents in bipolar membranes[J]. Environmental Science& Technology,2023,57(26):9664-9674.
    [39]
    MAREEV S A,EVDOCHENKO E,WESSLING M,et al. A comprehensive mathematical model of water splitting in bipolar membranes:Impact of the spatial distribution of fixed charges and catalyst at bipolar junction[J]. Journal of Membrane Science,2020,603:118010.
    [40]
    LUCAS E,BUI J C,STOVALL T N,et al. Asymmetric bipolar membrane for high current density electrodialysis operation with exceptional stability[J]. ACS Energy Letters,2024,9(11):5596-5605.
    [41]
    BUI J C,CORPUS K R M,BELL A T,et al. On the nature of field-enhanced water dissociation in bipolar membranes[J]. The Journal of Physical Chemistry C,2021,125(45):24974-24987.
    [42]
    PENG J,ROY A L,GREENBAUM S G,et al. Effect of CO2 absorption on ion and water mobility in an anion exchange membrane[J]. Journal of Power Sources,2018,380:64-75.
    [43]
    EHLINGER V M,CROTHERS A R,KUSOGLU A,et al. Modeling proton-exchange-membrane fuel cell performance/degradation tradeoffs with chemical scavengers[J]. Journal of Physics-Energy,2020,2:044006.
    [44]
    WENG L,BELL A T,WEBER A Z. A systematic analysis of Cu-based membrane-electrode assemblies for CO2 reduction through multiphysics simulation[J]. Energy& Environmental Science,2020,13(10):3592-3606.
    [45]
    PETROV K,BUI J C,BAUMGARTNER L,et al. Anion-exchange membranes with internal microchannels for water control in CO2 electrolysis[J]. Sustainable Energy& Fuels,2022,6(22):5077-5088.
    [46]
    MARIN D H,PERRYMAN J T,HUBERT M A,et al. Hydrogen production with seawater-resilient bipolar membrane electrolyzers[J]. Joule,2023,7(4):765-781.
    [47]
    MARIONI N,ZHANG Z,ZOFCHAK E S,et al. Impact of ion-ion correlated motion on salt transport in solvated ion exchange membranes.[J]. ACS Macro Letters,2022,11(11):1258-1264.
    [48]
    CROTHERS A R,DARLING R M,KUSHNER D I,et al. Theory of multicomponent phenomena in cation-exchange membranes:Part III. transport in vanadium redox-flow-battery separators[J]. Journal of the Electrochemical Society,2020,167:013549.
    [49]
    FONG K D,BERGSTROM H K,MCCLOSKEY B D,et al. Transport phenomena in electrolyte solutions:Nonequilibrium thermodynamics and statistical mechanics[J]. AICHE Journal,2020,66(12):e17091.
    [50]
    FONG K D,SELF J,MCCLOSKEY B D,et al. Ion correlations and their impact on transport in polymer-based electrolytes[J]. Macromolecules,2021,54(6):2575-2591.
    [51]
    ZHANG H,CHENG D,XIANG C,et al. Tuning the interfacial electrical field of bipolar membranes with temperature and electrolyte concentration for enhanced water dissociation[J]. ACS Sustainable Chemistry& Engineering,2023,11(21):8044-8054.
    [52]
    KAISER V,BRAMWELL S T,HOLDSWORTH P C,et al. Onsager's Wien effect on a lattice[J]. Nat Mater,2013,12(11):1033-1037.
    [53]
    CHEN L,XU Q,OENER S Z,et al. Design principles for water dissociation catalysts in high-performance bipolar membranes.[J]. Nature Communications,2022,13:3846.
    [54]
    LIN M,DIGDAYA I A,XIANG C. Modeling the electrochemical behavior and interfacial junction profiles of bipolar membranes at solar flux relevant operating current densities[J]. Sustainable Energy& Fuels,2021,5:2149-2158.
    [55]
    CHEN L,XU Q,BOETTCHER S W. Kinetics and mechanism of heterogeneous voltage-driven water-dissociation catalysis[J]. Joule,2023,7(8):1867-1886.
    [56]
    TEDESCO M,HAMELERS H V M,BIESHEUVEL P M. Nernst-Planck transport theory for(reverse)electrodialysis:I. Effect of co-ion transport through the membranes[J]. Journal of Membrane Science,2016,510:370-381.
    [57]
    SONIN A A,PROBSTEIN R F. A hydrodynamic theory of desalination by electrodialysis[J]. Desalination,1968,5(3):293-329.
    [58]
    STRATHMANN H,RAPP H J,BAUER B,et al. Theoretical and practical aspects of preparing bipolar membranes[J]. Desalination,1993,90(1/2/3):303-323.
    [59]
    STRATHMANN H,KROL J J,RAPP H J,et al. Limiting current density and water dissociation in bipolar membranes[J]. Journal of Membrane Science,1997,125(1):123-142.
    [60]
    MAURO A. Space charge regions in fixed charge membranes and the associated property of capacitance[J]. Biophysical Journal,1962,2:179-198.
    [61]
    BALSTER J,SUMBHARAJU R,SRIKANTHARAJAH S,et al. Asymmetric bipolar membrane:A tool to improve product purity[J]. Journal of Membrane Science,2007,287(2):246-256.
    [62]
    PALEOLOGOU M,THIBAULT A,WONG P Y,et al. Enhancement of the current efficiency for sodium hydroxide production from sodium sulphate in a two-compartment bipolar membrane electrodialysis system[J]. Separation and Purification Technology,1997,11(3):159-171.
    [63]
    RAUCQ D,POURCELLY G,GAVACH C. Production of sulphuric acid and caustic soda from sodium sulphate by electromembrane processes:Comparison between electro-electrodialysis and electrodialysis on bipolar membrane[J]. Desalination,1993,91(2):163-175.
    [64]
    EGOROV E N,SVITTSOV A A,DUDNIK S N,et al. Fractionation of multicomponent solutions by electrodialysis with bipolar membranes[J]. Petroleum Chemistry,2012,52:583-592.
    [65]
    NIEWSKI J W,NIEWSKA G W,WINNICKI T. Application of bipolar electrodialysis to the recovery of acids and bases from water solutions[J]. Desalination,2004,169(1):11-20.
    [66]
    NEGRO C,BLANCO M A,LOPEZ-Mateos F,et al. Free acids and chemicals recovery from stainless steel pickling baths[J]. Separation Science and Technology,2001,36(7):1543-1556.
    [67]
    WEI Y,WANG Y,ZHANG X,et al. Comparative study on regenerating sodium hydroxide from the spent caustic by bipolar membrane electrodialysis(BMED)and electro-electrodialysis(EED)[J]. Separation and Purification Technology,2013,118:1-5.
    [68]
    WEI Y,LI C,WANG Y,et al. Regenerating sodium hydroxide from the spent caustic by bipolar membrane electrodialysis(BMED)[J]. Separation and Purification Technology,2012,86:49-54.
    [69]
    SONG K,CHAE S,BANG J. Separation of sodium hydroxide from post-carbonation brines by bipolar membrane electrodialysis(BMED)[J]. Chemical Engineering Journal,2021,423:130179.
    [70]
    KONG L,YAN G,HU K,et al. Electro-driven direct lithium extraction from geothermal brines to generate battery-grade lithium hydroxide[J]. Nature Communications,2025,16(806).
    [71]
    BOYAVAL P,SETA J,GAVACH C. Concentrated propionic-acid production by electrodialysis[J]. Enzyme and Microbial Technology,1993,15(8):683-686.
    [72]
    FERRER J,LABORIE S,DURAND G,et al. Formic acid regeneration by electromembrane processes[J]. Journal of Membrane Science,2006,280(1/2):509-516.
    [73]
    ZHANG X,LI C,WANG Y,et al. Recovery of acetic acid from simulated acetaldehyde wastewaters:Bipolar membrane electrodialysis processes and membrane selection[J]. Journal of Membrane Science,2011,379(1/2):184-190.
    [74]
    BAILLY M. Production of organic acids by bipolar electrodialysis:Realizations and perspectives[J]. Desalination,2002,144(1/2/3):157-162.
    [75]
    WANG M,KHAN M A,MOHSIN I,et al. Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber-Bosch processes?[J]. Energy& Environmental Science,2021,14(5):2535-2548.
    [76]
    CHEN J G,CROOKS R M,SEEFELDT L C,et al. Beyond fossil fuel-driven nitrogen transformations[J]. Science,2018,360(6391).
    [77]
    XIE M,SHON H K,GRAY S R,et al. Membrane-based processes for wastewater nutrient recovery:Technology,challenges,and future direction[J]. Water Research,2016,89:210-221.
    [78]
    DONG H,LAGUNA C M,LIU M J,et al. Electrified ion exchange enabled by water dissociation in bipolar membranes for nitrogen recovery from source-separated urine[J]. Environmental Science& Technology,2022,56(22):16134-16143.
    [79]
    LI Y,WANG R,SHI S,et al. Bipolar membrane electrodialysis for ammonia recovery from synthetic urine:Experiments,modeling,and performance analysis[J]. Environmental Science& Technology 2021,55(21):14886-14896.
    [80]
    SHARIFIAN R,BOER L,WAGTERVELD R M,et al. Oceanic carbon capture through electrochemically induced in situ carbonate mineralization using bipolar membrane[J]. Chemical Engineering Journal,2022,438,135326.
    [81]
    Keith D W,Holmes G,St. Angelo D,et al. A process for capturing CO2 from the atmosphere[J]. Joule,2018,2(8):1573-1594.
    [82]
    LUO F,YANG X Q,DUAN F L,et al. Recent advances in the bipolar membrane and its applications[J]. Chemical Industry and Engineering Progress,2024,43(1):145-163. 罗芬,杨晓琪,段方麟,等. 双极膜研究进展及应用展望[J]. 化工进展,2024,43(1):145-163.
    [83]
    GIESBRECHT P K,FREUND M S. Recent advances in bipolar membrane design and applications[J]. Chemistry of Materials,2020,32(19):8060-8090.
    [84]
    UNLU M,ZHOU J,KOHL P A. Hybrid anion and proton exchange membrane fuel cells[J]. Journal of Physical Chemistry C,2009,113(26):345-349.
    [85]
    METLAY A S,CHYI B,YOON Y,et al. Three-chamber design for aqueous acid-base redox flow batteries[J]. ACS Energy Letters,2022,7(3):908-913.
    [86]
    YAO X Y,QIAN H D,ZHAO H B. Research progress of bipolar membranes and their application in hydrogen energy[J]. Chemical Industry and Engineering,2024,41(5):19-34.. 姚欣昀,钱汇东,赵宏滨. 双极膜研究进展及氢能方向应用展望[J]. 化学工业与工程,2024,41(5):19-34.
    [87]
    XI D,ALFARAIDI A M,GAO J,et al. Mild pH-decoupling aqueous flow battery with practical pH recovery[J]. Nature Energy,2024,9:479-490.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (273) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return