Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 43 Issue 9
Sep.  2025
Turn off MathJax
Article Contents
WANG Gang, WANG Dongbin, DENG Jianguo, LI Bo, LIU Tonghao, WANG Junxia, JIANG Jingkun. Demands and challenges of stationary sources monitoring in the background of pollution and carbon emissions reduction[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(9): 209-218. doi: 10.13205/j.hjgc.202509021
Citation: WANG Gang, WANG Dongbin, DENG Jianguo, LI Bo, LIU Tonghao, WANG Junxia, JIANG Jingkun. Demands and challenges of stationary sources monitoring in the background of pollution and carbon emissions reduction[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(9): 209-218. doi: 10.13205/j.hjgc.202509021

Demands and challenges of stationary sources monitoring in the background of pollution and carbon emissions reduction

doi: 10.13205/j.hjgc.202509021
  • Received Date: 2025-01-27
    Available Online: 2025-11-05
  • Publish Date: 2025-09-01
  • The deep implementation of ultra-low emissions and the Double Carbon Goals in key industries, such as power and steel making has significantly altered the characteristics of flue gas from stationary sources, presenting new demands for stationary sources. This article discusses the current state of stationary sources in China and outlines the emerging technological demands for stationary sources monitoring under the background of pollution and carbon emissions reduction. Following ultra-low emission transformation, the concentrations of conventional pollutants such as dust, SO2, and NO x, as well as flue gas temperature, have decreased, while humidity of flue gas has increased in key industries. Meanwhile, the emission of unconventional pollutants, including condensable particulate matter (CPM), NH3, organic amines, and greenhouse gases, has become increasingly prominent. Studies indicate that post-transformation CPM emissions account for 25.7% to 99.6% of total particulate matter, with some sources exhibiting CPM concentrations surpassing those of filterable particulate matter. Additionally, excessive ammonia injection in denitrification systems has led to significant ammonia slip, with substantial deviations observed among different NH3 monitoring methods. In coal-fired power plants undergoing low-carbon transformation, biomass co-firing may elevate the concentrations of particulate heavy metals and NH3 in flue gas. Furthermore, the use of organic amine absorbents in carbon capture processes can result in substantial organic amine emissions. As pollution and carbon reduction initiatives for stationary sources continue to advance, it is crucial to enhance the accuracy and quality control of online monitoring equipment for dust, SO2, and NO x. Additionally, a CPM monitoring technology tailored to China's stationary sources should be developed, and key industries should be systematically regulated. Ammonia emissions from stationary sources should be monitored using standardized methods, while online monitoring and control technologies for heavy metal emissions need further development. Additionally, online monitoring of organic amine escape from carbon capture processes should be implemented, and the development of carbon monitoring instruments should be strengthened.
  • loading
  • [1]
    GENG G,LIU Y,LIU Y,et al. Efficacy of China’s clean air actions to tackle PM2.5 pollution between 2013 and 2020[J]. Nature Geoscience,2024,17:987-994.
    [2]
    WANG G,DENG J,ZHANG Y,et al. Air pollutant emissions from coal-fired power plants in China over the past two decades[J]. Science of the Total Environment,2020,741:140326.
    [3]
    LIANG Y G,LI Q,et al. Forward ultra-low emission for power plants via wet electrostatic precipitators and newly developed demisters:Filterable and condensable particulate matters[J]. Atmospheric Environment,2020,225:117372.
    [4]
    ZHAO K. Research on emission characteristics and environmental impact of particulates in a coal-fired power plant in Beijing[D]. Chengdu:Chengdu University of Technology,2013. 赵珂. 北京某燃煤电厂颗粒物的排放特征与环境影响研究[D]. 成都:成都理工大学,2013.
    [5]
    LI W J. Research on emission characteristics of atmospheric mercury in coal-fired power plants and cement plants[D]. Chongqing:Southwest University,2011. 李文俊. 燃煤电厂和水泥厂大气汞排放特征研究[D]. 重庆:西南大学,2011.
    [6]
    YUAN C,LIANG S W,YAO Z B,et al. Study on inorganic components in condensable particulate matter emitted from typical stationary sources[J]. Acta Scientiae Circumstantiae,2022,42(9):401-407. 袁畅,粱胜文,姚智兵,等. 典型的固定源排放可凝结颗粒物中无机组分研究[J]. 环境科学学报,2022,42(9):401-407.
    [7]
    JIANG J K,DENG J G,LI Z,et al. Review of sampling methods for PM2.5 in exhaust gas from stationary sources[J]. Environmental Science,2014,35(5):2018-2024. 蒋靖坤,邓建国,李振,等. 固定污染源排气中PM2.5采样方法综述[J]. 环境科学,2014,35(5):2018-2024.
    [8]
    WU B B,BAI X X,LIU W,et al. Non-negligible stack emissions of noncriteria air pollutants from coal-fired power plants in China:condensable particulate matter and sulfur trioxide[J]. Environmental Science & Technology,2020,54(11):6540-6550.
    [9]
    WANG G,DENG J,ZHANG Y,et al. Evaluating airborne condensable particulate matter measurement methods in typical stationary sources in China[J]. Environmental Science & Technology,2020,54(3):1363-1371.
    [10]
    LU C M,DAT N D,LIEN C K,et al. Characteristics of fine particulate matter and polycyclic aromatic hydrocarbons emitted from coal combustion processes[J]. Energy Fuels,2019,33(10):10247-10254.
    [11]
    YANG L,ZHANG B,WANG K H,et al. Conversion characteristics of combustible particles from coal-fired flue gas in WFGD and WESP[J]. Environmental Science,2019,40(1):121-125. 杨柳,张斌,王康慧,等. 超低排放路线下燃煤烟气可凝结颗物粒在WFGD、WESP中的转化特性[J]. 环境科学,2019,40(1):121-125.
    [12]
    LI J,QI Z,LI M,et al. Physical and chemical characteristics of condensable particulate matter from an ultralow-emission coal-fired power plant[J]. Energy & Fuels,2017,31(2):1778-1785.
    [13]
    PEI B. Determination and emission of condensable particulate matter from coal-fired power plants[J]. Environmental Science,2015,36(5):1544-1549. 裴冰. 燃煤电厂可凝结颗粒物的测试与排放[J]. 环境科学,2015,36(5):1544-1549.
    [14]
    YANG H H,LEE K T,HSIEH Y S,et al. Filterable and condensable fine particulate emissions from stationary sources[J]. Aerosol and Air Quality Research,2014,14(7):2010-2016.
    [15]
    HU Y Q,WANG Z,GUO J H,et al. Emission concentration and characteristics of particulate matter and water-soluble ions in exhaust gas of typical combustion sources with ultra-low emission[J]. Environmental Science,2021,42(5):2159-2168. 胡月琪,王铮,郭建辉,等. 超低排放典型燃烧源颗粒物及水溶性离子排放水平与特征[J]. 环境科学,2021,42(5):2159-2168.
    [16]
    HU Y Q,WANG Z,GUO J H,et al. Emission levels and characteristics of particulate matter and water-soluble ions from typical combustion sources with ultra-low emissions[J]. Environmental Science,2021,42(5):2159-2168. 胡月琪,邬晓东,王琛,等. 北京市典型燃烧源颗粒物排放水平与特征测试[J]. 环境科学,2016,37(5):1653-1661.
    [17]
    CANO M,REINA T R,PORTILLO,et al. Characterization of emissions of condensable particulate matter under real operation conditions in cement clinker kilns using complementary experimental techniques[J]. Environmental Science & Technology,2021,786:147472.
    [18]
    WU Y J,XU Z Y,LIU S Q,et al. Emission characteristics of PM2.5 and components of condensable particulate matter from coal-fired industrial plants[J]. Science of the Total Environment,2021,796:148782.
    [19]
    LIU A L,YI J R,DING X,et al. An online technology for effectively monitoring inorganic condensable particulate matter emitted from industrial plant[J]. Journal of Hazardous Materials,2022,428:128221.
    [20]
    NGO T H,YANG H Y,PAN S YA,et al. Condensable and filterable particulate matter emission of coal fired boilers and characteristics of PM2.5-bound polycyclic aromatic hydrocarbons in the vicinity[J]. Fuel,2022,308:12183.
    [21]
    WU Y J,XU Z Y,LIU S Q,et al. Emission characteristics of particulate matter from coal-fired power units with different load conditions[J]. Water,Air, & Soil Pollution,2022,233:447.
    [22]
    LIU S Q,WU Y J,XU Z Y,et al. Study on the removal characteristics of different air pollution control devices for condensable particulate matter in coal-fired power plants[J]. Chemosphere,2022,294:133668.
    [23]
    LIU G S,LI J Z,LI X L,et al. Characteristics of particulates from typical ultra-low emission coal-fired units in the surrounding areas of Beijing[J]. Electric Power Science and Environmental Protection,2022,38(2):128-134. 刘更生,李军状,李小龙,等. 北京周边地区典型超低排放燃煤机组颗粒物特征研究[J]. 电力科技与环保,2022,38(2):128-134.
    [24]
    FEI M M,CUI L,SU C H,et al. Current situation and prospect of flue gas denitration technology for cement kilns[J]. Cement Technology,2019(3):89-94. 费明明,崔雷,苏传好,等. 水泥窑烟气脱硝技术现状及展望[J]. 水泥技术,2019(3):89-94.
    [25]
    CHEN X. Research on ammonia emission characteristics of a cement plant[J]. China Cement,2024(1):58-60. 陈雪. 某水泥厂氨气排放特征研究[J]. 中国水泥,2024(1):58-60.
    [26]
    CHEN D Y,WANG Z C,LI Y H,et al. Technology of coal-fired units coupled with sludge power generation[J]. Thermal Power Generation,2019,48(4):15-20. 陈大元,王志超,李宇航,等. 燃煤机组耦合污泥发电技术[J]. 热力发电,2019,48(4):15-20.
    [27]
    ZHANG J L,YU J Y,LIU Z J,et al. Current situation and trend of air pollutant emissions in china's iron and steel industry[J]. Iron and Steel,2021,56(12):1-9. 张建良,尉继勇,刘征建,等. 中国钢铁工业空气污染物排放现状及趋势[J]. 钢铁,2021,56(12):1-9.
    [28]
    SONG G J,ZHAO Y J,GENG J B,et al. A comparative study on air pollutant emission standards of coal-fired power plants in China and the United States[J]. Chinese Journal of Environmental Management,2017,9(1):21-28. 宋国君,赵英煚,耿建斌,等. 中美燃煤火电厂空气污染物排放标准比较研究[J]. 中国环境管理,2017,9(1):21-28.
    [29]
    JIANG M,LI X Q,JI L,et al. Comparative study on atmospheric pollutant emission standards of cement industry at home and abroad[J]. Environmental Science,2014,35(12):4752-4758. 江梅,李晓倩,纪亮,等. 国内外水泥工业大气污染物排放标准比较研究[J]. 环境科学,2014,35(12):4752-4758.
    [30]
    TONG Y,YUE T,GAO J,et al. Partitioning and emission characteristics of Hg,Cr,Pb,and As among air pollution control devices in Chinese coal-fired industrial boilers[J]. Energy Fuels,2020,34(6):7067-7075.
    [31]
    YUE T,WANG K,WANG C,et al. Emission characteristics of hazardous atmospheric pollutants from ultra-low emission coal-fired industrial boilers in China[J]. Aerosol and Air Quality Research,2020,20:877-888.
    [32]
    YE X. Study on emission characteristics of PM2.5 and its chemical components from typical biomass combustion sources[D]. Wuhan:Jianghan University,2019. 叶巡. 典型生物质燃烧源PM2.5及其化学组分排放特征研究[D]. 武汉:江汉大学,2019.
    [33]
    CHEN X J. Study on atmospheric pollutant emission characteristics and high-resolution inventory construction of ultra-low emission power plants[D]. Shanghai:Shanghai Jiao Tong University,2020. 陈筱佳. 超低排放电厂大气污染物排放特征及高分辨率清单构建研究[D]. 上海:上海交通大学,2020.
    [34]
    WU J. Construction and application of emission inventory for conventional pollutants and key components from biomass combustion in China[D]. Wuhan:China University of Geosciences,2021. 吴剑. 中国生物质燃烧常规污染物和关键组分排放清单构建及应用研究[D]. 武汉:中国地质大学,2021.
    [35]
    LIU J Y,GAO J J,TONG Y L,et al. Refined emission inventory of atmospheric pollutants from coal-fired boilers in Beijing-Tianjin-Hebei Region[J]. China Environmental Science,2022,42(5):2041-2049. 刘洁玉,高佳佳,童亚莉,等. 京津冀燃煤锅炉大气污染物精细化排放清单[J]. 中国环境科学,2022,42(5):2041-2049.
    [36]
    AZZI M,ANGOVE D,DAVE N,et al. Emissions to the atmosphere from amine-based post combustion CO2 capture plant-regulatory aspects[J]. Oil & Gas Science and Technology,2014,69(5):793-803.
    [37]
    SILVA E F DA,KOLDERUP H,GOETHEER E,et al. Emission studies from a CO2 capture pilot plant[C]// International Conference on Greenhouse Gas Technologies,Kyoto,Japan,2013:778-783.
    [38]
    KAMIJO T,KAJIYA Y,ENDO T,et al. SO3 impact on amine emission and emission reduction technology[C]// International Conference on Greenhouse Gas Technologies,Kyoto,Japan,2012:1793-1796.
    [39]
    KHAKHARIA P,HUIZINGA A,LOPEZ C J,et al. Acid wash scrubbing as a countermeasure for ammonia emissions from a postcombustion CO2 capture plant[J]. Industrial & Engineering Chemistry Research,2014,53(33):13195-13204.
    [40]
    KHAKHARIA P,KVAMSDAL H M,SILVA E F DA,et al. Field study of a Brownian demister unit to reduce aerosol based emission from a post combustion CO2 capture plant[J]. International Journal of Greenhouse Gas Control,2014,28:57-64.
    [41]
    THOMPSON J G,COMBS M,ABAD K,et al. Pilot testing of a heat integrated 0.7 MWe CO2 capture system with two-stage air-stripping:Emission[J]. International Journal of Greenhouse Gas Control,2017,64:267-275.
    [42]
    YI N T,FANG M X,DI W T,et al. High amine emissions formation and aerosol particle size distribution in post-combustion CO2 capture process[J]. International Journal of Greenhouse Gas Control,2022,118:103672.
    [43]
    YANG R M. Selection of gaseous pollutant measuring instruments in CEMS under ultra-low emission conditions[J]. Industrial Instrumentation & Automation,2018(6):17-20. 杨锐明. 超低排放条件下CEMS中气态污染物测量仪表的选型[J]. 工业仪表与自动化装置,2018(6):17-20.
    [44]
    MA D W,ZHA Z M,ZHANG B Y,et al. Operation status and analysis of flue gas CEMS in coal-fired power plants of Anhui Province[J]. Electric Power Science and Environmental Protection,2019,35(6):25-28. 马大卫,查智明,张本耀,等. 安徽省燃煤电厂烟气CEMS运行情况及分析[J]. 电力科技与环保,2019,35(6):25-28.
    [45]
    GENG Y,LI B,WU Y Y,et al. Full-system calibration of fully extractive SO2 stationary source online monitoring equipment under ultra-low emission process[J]. Environmental Monitoring and Early Warning,2023,15(4):57-62. 耿晔,李斌,武洋洋,等. 超低排放工艺下完全抽取式二氧化硫固定源在线监测设备全系统校准[J]. 环境监控与预警,2023,15(4):57-62.
    [46]
    WANG X P,XU M Y. Discussion on CEMS technology in ultra-low emission coal-fired power plants[J]. Electric Power Science and Environmental Protection,2020,36(2):30-32. 王新培,许明扬. 超低排放燃煤电厂CEMS技术探讨[J]. 电力科技与环保,2020,36(2):30-32.
    [47]
    HAN X,LI F. Brief analysis on upgrade and reconstruction of CEMS pretreatment system for ultra-low emission of sintering flue gas in a steel plant[J]. Analytical Instrumentation,2021(5):78-84. 韩旭,李峰. 某钢铁厂烧结烟气超低排放CEMS预处理系统升级改造浅析[J]. 分析仪器,2021(5):78-84.
    [48]
    LI J,LI Z Y,ZHANG Z F,et al. Brief analysis on selection of online monitoring CEMS instruments in cement industry under background of ultra-low emission[J]. Cement,2024(4):25-27. 李杰,李正阳,张振峰,等. 水泥行业超低排放背景下在线监测CEMS仪表的选型浅析[J]. 水泥,2024(4):25-27.
    [49]
    JIANG J K,DENG J G,WANG G,et al. Measurement method for condensable particulate matter from stationary sources[J]. Environmental Science,2019,40(12):5234-5239. 蒋靖坤,邓建国,王刚,等. 固定污染源可凝结颗粒物测量方法[J]. 环境科学,2019,40(12):5234-5239.
    [50]
    WANG G,DENG J G,MA Z Z,et al. Characteristics of filterable and condensable particulate matter emitted from two waste incineration power plants in China[J]. Science of the Total Environment,2018,639:695-704.
    [51]
    DENG J G,ZHANG Y,WANG L B,et al. Dilution indirect method and system for measuring condensable particulate matter from stationary sources[J]. Acta Scientiae Circumstantiae,2020,40(11):4162-4168. 邓建国,张莹,王乐冰,等. 测量固定源可凝结颗粒物的稀释间接法及系统[J]. 环境科学学报,2020,40(11):4162-4168.
    [52]
    LI Y J,DENG J G,WANG G,et al. Design of dilution sampler for condensable particulate matter from stationary sources[J]. Acta Scientiae Circumstantiae,2020,40(5):1656-1660. 李妍菁,邓建国,王刚,等. 固定源可凝结颗粒物稀释采样器的设计[J]. 环境科学学报,2020,40(5):1656-1660.
    [53]
    DENG J G,WANG D B,LIU T H,et al. Study on organic components in condensable particulate matter emitted from coal-fired power plants and iron and steel plants[J]. Environmental Engineering,2022,40(3):13-17. 邓建国,王东滨,刘通浩,等. 燃煤电厂和钢铁厂排放可凝结颗粒物中有机组分研究[J]. 环境工程,2022,40(3):13-17.
    [54]
    ZHANG Y,DENG J G,WANG G,et al. Emission characteristics of condensable particulate matter in typical iron and steel coking plants[J]. Environmental Engineering,2020,38(9):154-158. 张莹,邓建国,王刚,等. 典型钢铁焦化厂可凝结颗粒物排放特征[J]. 环境工程,2020,38(9):154-158.
    [55]
    李博,王东滨,刘通浩,等. 固定污染源烟气CO2和流量在线监测分析[J/OL]. 大气与环境光学学报,1-21[ 2025-9-19]. https://link.cnki.net/urlid/34.1298.O4.20250211.1405.002.

    LI B,WANG D B,LIU T H,et al. Online monitoring and analysis of CO2 and flow in flue gas from stationary sources[J/OL]. Journal of Atmospheric and Environmental Optics,1-21[ 2025-9-19]. https://link.cnki.net/urlid/34.1298.O4.20250211.1405.002.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (46) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return