Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 43 Issue 10
Oct.  2025
Turn off MathJax
Article Contents
WANG Shuo, ZHAO Hu, TIAN Yi, YE Jing, HU Hualong. Characteristics of typical elements and environmental impact assessment for road subgrade utilization of molybdenum tailings based on TRRP model[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(10): 134-143. doi: 10.13205/j.hjgc.202510015
Citation: WANG Shuo, ZHAO Hu, TIAN Yi, YE Jing, HU Hualong. Characteristics of typical elements and environmental impact assessment for road subgrade utilization of molybdenum tailings based on TRRP model[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(10): 134-143. doi: 10.13205/j.hjgc.202510015

Characteristics of typical elements and environmental impact assessment for road subgrade utilization of molybdenum tailings based on TRRP model

doi: 10.13205/j.hjgc.202510015
  • Received Date: 2024-08-29
  • Accepted Date: 2024-10-15
  • Rev Recd Date: 2024-09-30
  • Available Online: 2025-12-03
  • Publish Date: 2025-10-01
  • Based on an implementation case of a molybdenum mine tailings roadbed utilization project in Inner Mongolia, this study investigated the distribution and leaching characteristics of typical elements in molybdenum tailings and the subgrade materials derived from them. Additionally, the TRRP model was employed to evaluate the potential environmental risks to groundwater during the utilization of molybdenum tailings as subgrade materials. Results indicated that the concentrations of Cd, Hg, As, Pb, Cr, Cu, Ni, Zn, Mn, Mo, and F in both molybdenum tailings and derived subgrade materials did not exceed the screening values for the first type of land use specified in GB 36600—2018. However, elements such as Cd, Pb, Zn, Cu, and Mo surpassed the national soil background values, with the concentration of Mo exceeding its background value by nearly 112 times. Under neutral conditions, the leaching concentration of Mo exceeded the Class III limit set by GB/T 14848—2017. Moreover, under acidic conditions, the leaching concentrations of Cd, Pb, Zn, and Mo also exceeded this limit. Notably, the highest leaching rate observed was 15.91% for Cd, and the release levels of typical elements were higher under acidic conditions compared to neutral conditions. In subgrade materials, the effective leaching concentrations of Cd, Pb, Mn, and Mo exceeded the Class III limit setby GB/T 14848—2017, and the leaching rate of Cd, Zn, and Mo exceeded by 20%. Nevertheless, based on the groundwater risk assessment using the TRRP-T2 model, the concentrations of typical heavy metal elements remained within the Class Ⅲ limits setby GB/T 14848—2017, indicating that the environmental risks posed by the use of molybdenum tailings for subgrade materials were manageable. The research results can provide theoretical support and data reference for the environmental risk assessment of the resource utilization scenarios of large industrial solid wastes, such as metal tailings in roadbed utilization.
  • loading
  • [1]
    Ministry of Natural Resources,PRC. China mineral resources(2024)[M]. Beijing:Geology Press,2023. 中华人民共和国自然资源部. 中国矿产资源报告(2024)[M]. 北京:地质出版社,2023.
    [2]
    CUI X W,DI Y Q,PANG H,et al. Research on preparation of high performance concrete with molybdenum tailings[J]. Matal Mine,2017(7):193-196. 崔孝炜,狄燕清,庞华,等. 用某钼尾矿制备高性能混凝土的试验[J]. 金属矿山,2017(7):193-196.
    [3]
    WANG X L,TIAN D W,SHI T H,et al. Preparation and performances of building ceramic by molybdenum tailings[J]. Journal of Synthetic Crystals,2017,46(8):1517-1520. 王秀兰,田达威,史苘桧,等. 钼尾矿制备建筑陶瓷及性能研究[J]. 人工晶体学报,2017,46(8):1517-1520.
    [4]
    WANG G B,LAN Z Y,ZHAO Q P,et al. Review of comprehensive recovery of valuable metals from molybdenum[J]. Multipurpose Utilization of Mineral Resources,2021(3):140-148. 王国彬,蓝卓越,赵清平,等. 钼尾矿中有价金属的综合回收研究现状[J]. 矿产综合利用,2021(3):140-148.
    [5]
    LI F,CUI X W,HU Z Z,et al. Research on preparation of cemented backfilling materials using molybdenum tailings[J]. Non-Metallic Mines,2021,44(6):49-52. 李峰,崔孝炜,胡哲哲,等. 钼尾矿制备胶结充填材料的研究[J]. 非金属矿,2021,44(6):49-52.
    [6]
    MENG F W,TU Q P,XIANG A H,et al. Soilization improvement and cultivation experiment of molybdenum tailings in Hebei province[J]. Conservation and Utilization of Mineral Resources,2024,44(2):106-114. 孟凡伟,涂全平,向艾华,等. 河北省某钼尾矿土壤化改良及种植实验研究[J]. 矿产保护与利用,2024,44(2):106-114.
    [7]
    WANG S,TIAN Y,YE J,et al. Comparative research and prospect of domestic and foreign tailing management system[J]. Environmental Monitoring in China,2020,36(6):29-35. 王硕,田祎,叶旌,等. 国内外尾矿管理制度比较研究和展望[J]. 中国环境监测,2020,36(6):29-35.
    [8]
    JAHROMI M A,JAMSHIDI-ZANJANI A,DARBAN A K. Heavy metal pollution and human health risk assessment for exposure to surface soil of mining area:a comprehensive study[J]. Environmental Earth Sciences,2020,79(14):365.
    [9]
    XIAO H,HAN Z W,XIONG J,et al. Bioavailability and ecological risk assessment of Sb and As in tailings of Qinglong antimony mine in Guizhou[J]. Environmental Engineering,2022,40(5):123-132. 肖涵,韩志伟,熊佳,等. 贵州晴隆锑矿尾砂中锑和砷的生物有效性及生态风险评价[J]. 环境工程,2022,40(5):123-132.
    [10]
    LI X Y,WU C. Fraction distribution and effect of leachate pH on the migration of heavy metals in soil around a lead-zinc mine in Hunan Province[J]. Environmental Engineering,2017,35(5):172-176. 李晓艳,吴超. 湖南某铅锌矿土壤重金属形态分析及淋溶液pH值对其淋滤的影响[J]. 环境工程,2017,35(5):172-176.
    [11]
    YI L S,WAN L,WANG Z. Application research of Jinshandian’s iron tailings as subgrade materials[J]. Mining R &D,2014,34(4):88-91. 易龙生,万磊,汪洲. 金山店铁尾矿用作路基材料的研究[J]. 矿业研究与开发,2014,34(4):88-91.
    [12]
    SANT’ANA J N,DASILVA S N,SILVA G C,et al. Technical and environmental feasibility of interlocking concrete pavers with iron ore tailings from tailings dams[J]. Journal of Materials in Civil Engineering,2017,29(9):1-6.
    [13]
    QUAN Z G,FENG X L,CHEN Y Y. Study on the preparation of reactive powder concrete with molybdenum tailings[J]. New Building Materials,2022,49(3):46-49. 权宗刚,冯晓兰,陈媛媛. 利用钼尾矿制备活性粉末混凝土的研究[J]. 新型建筑材料,2022,49(3):46-49.
    [14]
    SU C L,XU X H,SU Y X,et al. Investigation of groundwater pollution around a molybdenum tailing pond and analysis of its pollution sources[J]. Guangzhou Chemical Industry,2024,52(1):160-163. 苏彩丽,徐晓航,苏雨轩,等. 某钼尾矿库周围地下水污染调查及污染源解析[J]. 广州化工,2024,52(1):160-163.
    [15]
    Hu S T,Xiong X H,Li X. et al. Characterization and utilization potential of typical molybdenum tailings in Shaanxi Province,China[J]. Environ Geochem Health,2024,46(8):265.
    [16]
    WANG T,SI W T,OUYANG Y,et al. Characteristic and evaluation of soil heavy metals pollution in the molybdenum mine area in Shaanxi[J]. Journal of Environmental Engineering Technology. 2019,9(4):440-446. 王涛,司万童,欧阳琰,等. 陕西某钼矿区土壤重金属污染特征及评价[J]. 环境工程技术学报,2019,9(4):440-446.
    [17]
    CHENG X D,SUN J W,JIA X,et al. Pollution characteristics and health risk assessment of heavy metals in farmland soil around the molybdenum mining area in Luanchuan,Henan Province[J]. Geology in China,2023,50(6):1871-1886. 程贤达,孙建伟,贾煦,等. 河南栾川县钼矿区周边农田土壤重金属污染特征与健康风险评价[J]. 中国地质,2023,50(6):1871-1886.
    [18]
    YU J L,JIANG G B,ZHOU X,et al. Study of heavy metal release characteristics of asphalt pavement surface prepared by drilling residue[J]. Chemical Engineering of Oil & Gas,2023,52(1):131-137. 于劲磊,蒋国斌,周鑫,等. 钻屑残渣制备沥青路面面层重金属释放特征研究[J]. 石油与天然气化工,2023,52(1):131-137.
    [19]
    RAN D Q,AN B,LI Y R,et al. Research on the diffusion law of mercury in roadbed of coal gangue based on porous media[J]. Materials Reports,2020,34(S1):255-257. 冉德钦,安斌,李轶然,等. 基于多孔介质煤矸石路基汞元素的扩散规律研究[J]. 材料导报,2020,34(增刊1):255-257.
    [20]
    LI S,XU Y,ZHAO Y X,et al. Regional differences in risks and control limits of road use of oil and gas extraction wastes in yellow river basin[J]. Research of Environmental Sciences,2024,37(1):160-170. 李淑,徐亚,赵玉鑫,等. 黄河流域油气开采废物道路利用的风险与管控限值区域差异[J]. 环境科学研究,2024,37(1):160-170.
    [21]
    SUN S N,CHEN H W,SHE K L,et al. Environmental risk characteristics and temporal and spatial differentiation characteristics of fly ash road filling and utilization[J]. China Environmental Science,2022,42(6):2714-2723. 孙淑娜,谌宏伟,折开浪,等. 飞灰道路利用的环境风险及其时空分异特性[J]. 中国环境科学,2022,42(6):2714-2723.
    [22]
    CUI C H,LI L,LIU M J,et al. Mechanical properties and heavy metal leaching characteristics of cement pavement base prepared from oil-based drill cuttings[J]. Research of Environmental Sciences,2023,36(4):805-813. 崔长颢,李丽,刘美佳,等. 利用油基岩屑制备水泥路面基层的力学性能及重金属浸出特性研究[J]. 环境科学研究,2023,36(4):805-813.
    [23]
    ZHANG J,YANG Y,YANG J Z,et al. Environmental risk assessment of groundwater of granulated fly ash utilization on asphalt pavement[J]. Environmental Pollution & Control,2019,41(1):89-94. 张晶,杨玉飞,杨金忠,等. 造粒飞灰沥青混凝土路面利用的地下水环境风险评估[J]. 环境污染与防治,2019,41(1):89-94.
    [24]
    Ministry of Ecology and Environment,PRC. Solid waste—determination of mercury,arsenic,selenium,bismuth,antimony—microwave dissolution/atomic fluorescence spectrometry:HJ 702-2014[S]. China Environmental Science Press,2014. 中华人民共和国生态环境部. 固体废物 汞、砷、硒、锑、铋的测定 微波消解/原子荧光法:HJ 702-2014[S]. 中国环境科学出版社,2014.
    [25]
    Ministry of Ecology and Environment,PRC. Solid Waste–Determination of metals–Inductively coupled plasma mass spectrometry(ICP-MS):HJ 766-2015[S]. China Environmental Science Press,2015. 中华人民共和国生态环境部. 固体废物 金属元素的测定 电感耦合等离子体质谱法:HJ 766-2015[S]. 中国环境科学出版社,2015.
    [26]
    Ministry of Ecology and Environment,PRC. Solid waste-extraction procedure for leaching toxicity-horizontal vibration method:HJ577-2010[S]. China Environmental Science Press,2010. 中华人民共和国生态环境部. 固体废物 浸出毒性浸出方法 水平振荡法:HJ577-2010[S]. 中国环境科学出版社,2010.
    [27]
    Ministry of Ecology and Environment,PRC. Solid waste-Extraction procedure for leaching toxicity-Sulphuric acid & nitric acid method:HJ/T 299-2007[S]. China Environmental Science Press,2007. 中华人民共和国生态环境部. 固体废物 浸出毒性浸出方法 硫酸硝酸法:HJ/T 299-2007[S]. 中国环境科学出版社,2007.
    [28]
    China Buildings Materials Federation. Test methods for leachable ions of heavy metals in cement mortar:GB/T 30810-2014[S]. Standards Press of China,2007. 中国建筑材料联合会. 水泥胶砂中可浸出重金属的测定方法:GB/T 30810-2014[S]. 中国标准出版社,2007.
    [29]
    STRASSBERG G,MAIDMENT D,KATZ L. Dilution attenuation factors in susceptibility assessments:a GIS based method[R]. Texas:Center for Research in Water Resources,University of Texas at Austin,2003
    [30]
    BIN D H,ZHOU L C,LI H G,et al. Heavy metal leaching characteristics and potential risk from subgrade materials mixed with detoxification fly ash[J]. Environmental Sanitation Engineering,2021,29(2):63-70. 宾灯辉,周炼川,李洪刚,等. 掺加解毒飞灰的路基材料重金属浸出特征与潜在风险[J]. 环境卫生工程,2021,29(2):63-70.
    [31]
    BAO W L,LUO B,YAO G Y,et al. Typical elements distribution in water-based drilling cuttings from Hainan Province and their effects on groundwater after using as a pave in drilling site[J]. Journal of Environmental Engineering Technology,2023,13(6):2229-2239. 包为磊,罗飚,姚光远,等. 海南水基钻屑中典型元素分布及其铺垫井场后对地下水的影响[J]. 环境工程技术学报,2023,13(6):2229-2239.
    [32]
    Ministry of Ecology and Environment,PRC. Technical guidelines for risk assessment of soil contamination of land for construction:HJ 25.3-2019[S]. China Environmental Science Press,2019. 中华人民共和国生态环境部. 建设用地土壤污染风险评估技术导则:HJ 25.3-2019[S]. 中国环境科学出版社,2019.
    [33]
    XU H L,GUO H,SONG W J,et al. Modes of occurrence of trace elements in coal gangue from No.1 Coal Mine of Pingdingshan Mine Area[J]. Environmental Science & Technology,2016,39(5):65-69. 许红亮,郭辉,宋文娟,等. 平顶山矿区一矿煤矸石中微量元素赋存状态研究[J]. 环境科学与技术,2016,39(5):65-69.
    [34]
    ZHU Y M,ZHOU J. The development of flotation reagents in 2018[J]. Multipurpose Utilization of Mineral Resources,2019(4):1-10. 朱一民,周菁. 2018年浮选药剂的进展[J]. 矿产综合利用,2019(4):1-10.
    [35]
    XIAO J,LI X D,CHEN D X,et al. Experimental study on the beneficiation of molybdenum oxide from a molybdenum floatation tailings[J]. China Molybdenum Industry,2016,40(1):7-12. 肖骏,李晓东,陈代雄,等. 某钼尾矿氧化钼选矿试验研究[J]. 中国钼业,2016,40(1):7-12.
    [36]
    LI X X,WEI R F,ZHU G J,et al. Evaluation of groundwater pollution and pollution prevention and control measures in a molybdenum tailings pond[J]. Henan Chemical Industry,2021,38(7):56-59. 李晓昕,魏荣锋,朱国军,等. 某钼尾矿库地下水污染的评价及污染防治措施[J]. 河南化工,2021,38(7):56-59.
    [37]
    ZHAN J Y,LI S,NIE Q,et al. Leaching behavior and environmental effect of heavy metals from porous building materials prepared by molybdenum tailing and gold tailing[J]. Environmental Chemistry,2022,41(9):2850-2859. 战佳宇,李沙,聂卿,等. 基于钼尾矿和金尾矿的多孔建材制品重金属浸出行为及环境影响[J]. 环境化学,2022,41(9):2850-2859.
    [38]
    CHEN Y Y,JIA R,YANG S K,et al. Characterization of Cd and As released from construction and demolition wastes recycled in road construction[J]. Environmental Science & Technology,2016,39(9):50-55. 陈宇云,贾瑞,杨胜科,等. 建筑垃圾中镉和砷的释放特征研究[J]. 环境科学与技术,2016,39(9):50-55.
    [39]
    HUANG Z Y,JIANG L,WU P X,et al. Leaching characteristics of heavy metals in tailings and their simultaneous immobilization with triethylenetetramine functioned montmorillonite(TETA-Mt)against simulated acid rain[J]. Environmental Pollution,2020,266(P2):115236.
    [40]
    LI S M,ZHAO Z X,XU L,et al. Leaching characteristics and influencing factors of heavy metals from molybdenum tailings in Chengde[J]. Nonferrous Metals Engineering,2023,13(12):169-176. 李思敏,赵子兴,徐利,等. 承德某钼尾矿重金属淋溶释放规律及影响因素[J]. 有色金属工程,2023,13(12):169-176.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return