Citation: | ZHANG Kaijie, FENG Qian, SHANG Weichun, OU Zixuan, CAO Jiashun. SYNTHESIS OF CORE-SHELL CHITOSAN-Ag/TiO2 COMPOSITE BEADS FOR DEGRADATION OF IBUPROFEN[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 9-17. doi: DOI:10.13205/j.hjgc.202207002 |
[1] |
MÉNDEZ-ARRIAGA F, ESPLUGAS S, GIMÉNEZ J. Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation[J]. Water Research, 2008, 42(3):585-594.
|
[2] |
HUANG Q X, YU Y Y, TANG C M, et al. Occurrence and behavior of non-steroidal anti-inflammatory drugs and lipid regulators in wastewater and urban river water of the Pearl River Delta, South China[J]. Journal of Environmental Monitoring, 2011, 13(4):855-863.
|
[3] |
GEORGAKI I, VASILAKI E, KATSARAKIS N. A study on the degradation of carbamazepine and ibuprofen by TiO2&ZnO photocatalysis upon UV/visible-light irradiation[J]. American Journal of Analytical Chemistry, 2014, 5(8):518-534.
|
[4] |
MICHAEL I, RIZZO L, MCARDELL C S, et al. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment:a review[J]. Water Research, 2013, 47(3):957-995.
|
[5] |
LIANG R W, LUO S G, JING F F, et al. A simple strategy for fabrication of Pd@MIL-100(Fe) nanocomposite as a visible-light-driven photocatalyst for the treatment of pharmaceuticals and personal care products (PPCPs)[J]. Applied Catalysis B:Environmental, 2015, 176/177:240-248.
|
[6] |
ACHILLEOS A, HAPESHI E, XEKOUKOULOTAKIS N P, et al. UV-A and solar photodegradation of ibuprofen and carbamazepine catalyzed by TiO2[J]. Separation Science and Technology, 2010, 45(11):1564-1570.
|
[7] |
FEI J B, LI J B. Controlled preparation of porous TiO2-Ag nanostructures through supramolecular assembly for plasmon-enhanced photocatalysis[J]. Advanced Matercals, 2015, 27(2):314-319.
|
[8] |
KAMARI Y, GHIACI M. Preparation and characterization of ibuprofen/modified chitosan/TiO2 hybrid composite as a controlled drug-delivery system[J]. Microporous and Mesoporous Materials, 2016, 234:361-369.
|
[9] |
TANG L Z, TANG F, LI M, et al. Facile synthesis of Ag@AgCl-contained cellulose hydrogels and their application[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 553:618-623.
|
[10] |
ULLAH S, FERREIRA-NETO E P, PASA A A, et al. Enhanced photocatalytic properties of core@shell SiO2@TiO2 nanoparticles[J]. Applied Catalysis B:Environmental, 2015, 179:333-343.
|
[11] |
POUGIN A, DODEKATOS G, DILLA M, et al. Au@TiO2 core-shell composites for the photocatalytic reduction of CO2[J]. Chemistry-A European Journal, 2018, 24(47):12416-12425.
|
[12] |
WANG K, XING Z P, MENG D, et al. Hollow MoSe2@Bi2S3/CdS core-shell nanostructure as dual z-scheme heterojunctions with enhanced full spectrum photocatalytic-photothermal performance[J]. Applied Catalysis B:Environmental, 2021, 281:119482.
|
[13] |
REDDY K R, HASSAN M, GOMES V G. Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis[J]. Applied Catalysis A:General, 2015, 489:1-16.
|
[14] |
CHEN L N, FENG Q, YANG W, et al. Photocatalytic process optimization by numerical simulation based on the removal efficiency of carbamazepine under different operating conditions[J]. Polish Journal of Environmental Studies, 2021, 30(3):2013-2025.
|
[15] |
XIA D H, LO I M C. Synthesis of magnetically separable Bi2O4/Fe3O4 hybrid nanocomposites with enhanced photocatalytic removal of ibuprofen under visible light irradiation[J]. Water Research, 2016, 100:393-404.
|
[16] |
YI J H, HUANG L L, WANG H J, et al. AgI/TiO2 nanobelts monolithic catalyst with enhanced visible light photocatalytic activity[J]. Journal of Hazardous Materials, 2015, 284:207-214.
|
[17] |
BADER H, STURZENEGGER V, HOIGNÉ J. Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N,N-diethyl-p-phenylenediamine (DPD)[J]. Water Research, 1988, 22(9):1109-1115.
|
[18] |
HALDORAI Y, SHIM J J. Novel chitosan-TiO2 nanohybrid:preparation, characterization, antibacterial, and photocatalytic properties[J]. Polymer Composites, 2014, 35(2):327-333.
|
[19] |
SHAO Y, CAO C S, CHEN S L, et al. Investigation of nitrogen doped and carbon species decorated TiO2 with enhanced visible light photocatalytic activity by using chitosan[J]. Applied Catalysis B:Environmental, 2015, 179:344-351.
|
[20] |
LEONG K H, LIU S L, SIM L C, et al. Surface reconstruction of titania with g-C3N4 and Ag for promoting efficient electrons migration and enhanced visible light photocatalysis[J]. Applied Surface Science, 2015, 358:370-376.
|
[21] |
de GODOI F C, RODRIGUEZ-CASTELLON E, GUIBAL E, et al. An XPS study of chromate and vanadate sorption mechanism by chitosan membrane containing copper nanoparticles[J]. Chemical Engineering Journal, 2013, 234:423-429.
|
[22] |
WANG X P, LIM T T. Highly efficient and stable Ag-AgBr/TiO2 composites for destruction of Escherichia coli under visible light irradiation[J]. Water Research, 2013, 47(12):4148-4158.
|
[23] |
ZHUO N, LAN Y Q, YANG W B, et al. Adsorption of three selected pharmaceuticals and personal care products (PPCPs) onto MIL-101(Cr)/natural polymer composite beads[J]. Separation and Purification Technology, 2017, 177:272-280.
|
[24] |
KUMAR R, RASHID J, BARAKAT M A. Zero valent Ag deposited TiO2 for the efficient photocatalysis of methylene blue under UV-C light irradiation[J]. Colloids and Interface Science Communications, 2015, 5:1-4.
|
[25] |
XIAO G, SU H J, TAN T W. Synthesis of core-shell bioaffinity chitosan-TiO2 composite and its environmental applications[J]. Journal of Hazardous Materials, 2015, 283:888-896.
|
[26] |
BILGIN SIMSEK E, KILIC B, ASGIN M, et al. Graphene oxide based heterojunction TiO2-ZnO catalysts with outstanding photocatalytic performance for bisphenol:a, ibuprofen and flurbiprofen[J]. Journal of Industrial and Engineering Chemistry, 2018, 59:115-126.
|
[27] |
JACOBS L E, FIMMEN R L, CHIN Y P, et al. Fulvic acid mediated photolysis of ibuprofen in water[J]. Water Research, 2011, 45(15):4449-4458.
|
[28] |
RODRÍGUEZ E M, MÁRQUEZ G, TENA M, et al. Determination of main species involved in the first steps of TiO2 photocatalytic degradation of organics with the use of scavengers:the case of ofloxacin[J]. Applied Catalysis B:Environmental, 2015, 178:44-53.
|
[29] |
KHAN M, FUNG C S L, KUMAR A, et al. Magnetically separable BiOBr/Fe3O4@SiO2 for visible-light-driven photocatalytic degradation of ibuprofen:mechanistic investigation and prototype development[J]. Journal of Hazardous Materials, 2019, 365:733-743.
|