Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LV Shuangru, JIN Yanjun, LIU Guotao, REN Fumin, XI Chenggang, LU Tong, ZHU Jintong, ZHANG Chao. CHARACTERISTICS OF RESIDENTIAL DECORATION WASTE GENERATION AND MANAGEMENT COUNTERMEASURES:A CASE STUDY ON OLD PALACE AREA IN DAXING DISTRICT,BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 186-192. doi: DOI:10.13205/j.hjgc.202207027
Citation: MA Weiwei, SHI Xueqing, KONG Qiaoping, YU Tong, HAN Hongjun. ENHANCED REMOVAL OF PHENOLIC COMPOUNDS IN COAL GASIFICATION WASTEWATER BY IRON-CARBON MICROELECTROLYSIS PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 18-24. doi: DOI:10.13205/j.hjgc.202207003

ENHANCED REMOVAL OF PHENOLIC COMPOUNDS IN COAL GASIFICATION WASTEWATER BY IRON-CARBON MICROELECTROLYSIS PROCESS

doi: DOI:10.13205/j.hjgc.202207003
  • Received Date: 2021-01-23
    Available Online: 2022-09-02
  • In this study,the removal efficiency of phenolic compounds in coal gasification wastewater (CGW) and biodegradability were investigated by iron-carbon microelectrolysis (ICME) treatment.The results indicated that the iron-carbon composite (Fe/C) filler had a high iron and carbon ratio and rich pore structure,thereby performed higher reactivity.The single factor analysis showed that low dissolved oxygen (DO) and acidic condition were more favorable to microelectrolysis reaction in CGW treatment.However,it was not conducive to ICME reaction when the Fe/C filler content was too high or too low.The response surface method suggested that the optimum condition of the ICME process for phenolic compounds removal was the pH of 6.50,Fe/C filler content of 62.22 g/L,DO concentration of 0.47 mg/L.Based on the optimum condition,the removal efficiency of COD and total phenol reached 80.98% and 75.03%,respectively.The BOD5/COD value of CGW was increased from 0.21 to 0.36.The above results demonstrated that ICME played an important role in strengthening the removal of phenolic compounds in CGW,which provided better water quality for subsequent biochemical treatment.
  • [1]
    ZHU H, HAN Y X, XU C Y, et al. Overview of the state of the art of processes and technical bottlenecks for coal gasification wastewater treatment[J]. Science of the Total Environment, 2018, 637:1108-1126.
    [2]
    WANG W, HAN H J, YUAN M, et al. Treatment of coal gasification wastewater by a two-continuous UASB system with step-feed for COD and phenols removal[J]. Bioresource Technology, 2011, 102(9):5454-5460.
    [3]
    JIA S Y, HAN H J, ZHUANG H F, et al. The pollutants removal and bacterial community dynamics relationship within a full-scale British Gas/Lurgi coal gasification wastewater treatment using a novel system[J]. Bioresource Technology, 2015, 200:103-110.
    [4]
    JIA S Y, HAN H J, HOU B L, et al. Treatment of coal gasification wastewater by membrane bioreactor hybrid powdered activated carbon (MBR-PAC) system[J]. Chemosphere, 2014, 117:753-759.
    [5]
    WU S Q, QI Y F, FAN C Z, et al. Fe-Ni catalytic micro-electrolysis coupled with biological aerated filter for 2,4,6-trinitrotoluene production wastewater treatment[J]. Journal of Cleaner Production, 2017, 156(10):679-687.
    [6]
    WANG X Y, DU Y, MA J. Novel synthesis of carbon spheres supported nanoscale zero-valent iron for removal of metronidazole[J]. Applied Surface Science, 2016, 390(30):50-59.
    [7]
    DOU X M, LI R, ZHAO B, et al. Arsenate removal from water by zero-valent iron/activated carbon galvanic couples[J]. Journal of Hazardous Materials, 2010, 182(1/2/3):108-114.
    [8]
    贾福强,苗钧魁,于跃芹,等.响应面法优化电渗析处理褐藻酸钠废水工艺[J].环境工程学报, 2014,8(3):1041-1045.
    [9]
    张越锋,殷波,于海峰,等.响应面法优化Fenton处理棉浆废水[J].水处理技术, 2020, 46(6):117-121.
    [10]
    MA W W,HAN Y X,MA W C,et al. Enhanced nitrogen removal from coal gasification wastewater by simultaneous nitrification and denitrification (SND) in an oxygen-limited aeration sequencing batch biofilm reactor[J]. Bioresource Technology, 2017,244:84-91.
    [11]
    郑梦启,活性焦强化生物降解煤热解废水环状化合物性能与机制[D].哈尔滨:哈尔滨工业大学,2021.
    [12]
    国家环境保护总局编委会.水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社, 2002.
    [13]
    侯保林. SAC-Fe催化粒子电极三维电Fenton处理煤化工废水二级出水效能研究[D].哈尔滨:哈尔滨工业大学, 2016.
    [14]
    王德欣.外源强化厌氧处理费托合成废水的效能研究[D].哈尔滨:哈尔滨工业大学, 2017.
    [15]
    ZHANG S, YU H M, YANG J, et al. Design of the nanoarray pattern Fe-Ni bi-metal nanoparticles@M13 virus for the enhanced reduction of p-chloronitrobenzene through the micro-electrolysis effect[J]. Environmental Science-Nano, 2017, 4(4):876-885.
    [16]
    HUA L, YAN L, LIU L H. Treatment of dinitrodiazophenol production wastewater by Fe/C and Fe/Cu internal electrolysis and the COD removal kinetics[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 58:148-154.
    [17]
    LAI B, ZHOU Y X, YANG P, et al. Degradation of 3,3-iminobis-propanenitrile in aqueous solution by Fe0/GAC micro-electrolysis system[J]. Chemosphere, 2013, 90(4):1470-1477.
    [18]
    ZHANG S, WANG D, ZHOU L, et al. Intensified internal electrolysis for degradation of methylene blue as model compound induced by a novel hybrid material:multi-walled carbon nanotubes immobilized on zero-valent iron plates (Fe0-CNTs)[J]. Chemical Engineering Journal, 2013, 217:99-107.
    [19]
    樊金红,马鲁铭,高廷耀.溶解氧对催化铁内电解法预处理混合废水的影响[J].水处理技术, 2007,33(10):71-74.
    [20]
    SHIMIZU A, TOKUMURA M, NAKAJIMA K, et al. Phenol removal using zero-valent iron powder in the presence of dissolved oxygen:roles of decomposition by the Fenton reaction and adsorption/precipitation[J]. Journal of Hazardous Materials, 2012, 201(30):60-67.
    [21]
    XIAO J N, YUE Q Y, GAO B Y, et al. Performance of activated carbon/nanoscale zero-valent iron for removal of trihalomethanes (THMs) at infinitesimal concentration in drinking water[J]. Chemical Engineering Journal, 2014, 252:63-72.
    [22]
    ZHANG X B, DONG W Y, SUN F Y, et al. Degradation efficiency and mechanism of azo dye RR2 by a novel ozone aerated internal micro-electrolysis filter[J]. Journal of Hazardous Materials, 2014, 276:77-87.
    [23]
    李俊波,杨健,杨智迪,等.铁碳微电解法预处理印染废水的正交实验研究[J].工业安全与环保, 2017, 43(9):12-15.
    [24]
    黄新仁.响应面法在生物过程优化中的应用[D].长沙:湖南大学, 2011.
    [25]
    SUN X, KUROKAWA T, SUZUKI M, et al. Removal of cationic dye methylene blue by zero valent iron effects of pH and dissolved oxygen on removal mechanisms[J]. Journal of Environmental Science and Health, Part A, 2015, 50(10):1057-1071.
  • Relative Articles

    [1]HU Hongying, XIA Jun, CHEN Zhuo, LI Jun, WANG Yuming, CAI Hanying, ZHOU Qiaohong, WANG Bin, XUE Ying. Ethical issues and countermeasures regarding emerging contaminants in water environment[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 1-11. doi: 10.13205/j.hjgc.202501001
    [2]YANG Yanmei, XIA Tong, ZHANG Yun, AO Liang. SIMULATION ON TRANSPORT OF GROUNDWATER POLLUTANTS AFTER CLOSURE OF A LANDFILL IN CHONGQING BASED ON VISUAL MODFLOW[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 40-47. doi: 10.13205/j.hjgc.202404005
    [3]CHEN Jianjun, LONG Jisheng, CHEN Lin, BAI Li, LI Junhua. STATUS AND DEVELOPMENT TREND OF INTEGRATED TECHNOLOGY FOR MUTI-POLLUTANT CONTROL IN WASTE INCINERATION FLUE GAS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 211-221. doi: 10.13205/j.hjgc.202409020
    [4]LIU Guotao, REN Fumin, HU Shuxin, JIA Jinming. OCCURRENCE PREDICTION AND RESOURCE UTILIZATION OF OFFICE BUILDING DECORATION WASTE IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 119-126. doi: 10.13205/j.hjgc.202406014
    [5]XIANG Yuxue, LIANG Daolun, WANG Xiaojia, QIAN Yiwen, PAN Queyi, LIU Guofu, SHEN Dekui. FORMATION CHARACTERISTICS OF GASEOUS POLLUTANTS DURING CO-COMBUSTION PROCESS OF STEEL SMELTING SOLID WASTE AND WASTE INCINERATION FLY ASH[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 197-205,106. doi: 10.13205/j.hjgc.202312024
    [6]ZHOU Jun. IMPROVEMENT AND ECONOMIC BENEFIT ANALYSIS OF A TYPICAL TREATMENT PROCESS FOR DECORATION WASTE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 181-187. doi: 10.13205/j.hjgc.202302024
    [7]JIAO Xu-dong, WU Jia, WANG Tao, WU Na, FENG Qiang, FU Ze-qiang, DU Huan-zheng. RESEARCH ON SOLID WASTE CLASSIFICATION AND RESOURCE UTILIZATION BASED ON LIFE CYCLE MANAGEMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 201-206,170. doi: 10.13205/j.hjgc.202110029
    [8]DUAN Zhen-hua, HUANG Dong-li, XIAO Jian-zhuang, CHONG Dan, WANG Xing. INVESTIGATION ON COMPOSITION OF DECORATION WASTE AND POTENTIAL RESOURCE UTILIZATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 171-177. doi: 10.13205/j.hjgc.202110024
    [9]WANG Ruo-fei, ZHANG Guang-zhi, WANG Ning, REN Fu-min, CHEN Rui, XI Cheng-gang. ANALYSIS ON DOMESTIC AND FOREIGN CONSTRUCTION AND DEMOLITION WASTE RELATED STANDARDS AND PATENTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 27-32. doi: 10.13205/j.hjgc.202003005
  • Cited by

    Periodical cited type(4)

    1. 张海艳. 西安市装修垃圾处置现状研究. 中国资源综合利用. 2024(04): 108-111 .
    2. 邵明,吴奇轩. 装配式建筑可拆卸设计策略研究. 新建筑. 2024(02): 94-99 .
    3. 曾贤刚,李康玮,王琦. 室内装修甲醛污染健康效应及经济影响评价. 中国环境科学. 2023(08): 4370-4381 .
    4. 马黎,杜镇瀚,李大成,钟启明,吴迪. 基于蒙特卡洛法的土石坝溃决生命损失评估方法研究. 河南科学. 2022(11): 1811-1818 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.0 %FULLTEXT: 10.0 %META: 86.7 %META: 86.7 %PDF: 3.3 %PDF: 3.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.9 %其他: 16.9 %上海: 5.2 %上海: 5.2 %临汾: 0.5 %临汾: 0.5 %乌兰察布: 0.5 %乌兰察布: 0.5 %佛山: 1.4 %佛山: 1.4 %北京: 9.9 %北京: 9.9 %南京: 0.9 %南京: 0.9 %合肥: 0.5 %合肥: 0.5 %吉林: 0.5 %吉林: 0.5 %天津: 1.4 %天津: 1.4 %巴中: 0.5 %巴中: 0.5 %常德: 0.9 %常德: 0.9 %延安: 0.5 %延安: 0.5 %张家口: 1.9 %张家口: 1.9 %成都: 1.4 %成都: 1.4 %昆明: 0.9 %昆明: 0.9 %晋城: 0.9 %晋城: 0.9 %朝阳: 0.9 %朝阳: 0.9 %杭州: 0.5 %杭州: 0.5 %桂林: 0.5 %桂林: 0.5 %武汉: 1.9 %武汉: 1.9 %沈阳: 0.5 %沈阳: 0.5 %洛杉矶: 1.4 %洛杉矶: 1.4 %济源: 0.9 %济源: 0.9 %淄博: 0.5 %淄博: 0.5 %湖州: 0.5 %湖州: 0.5 %盐城: 0.9 %盐城: 0.9 %石家庄: 0.9 %石家庄: 0.9 %福州: 1.9 %福州: 1.9 %芒廷维尤: 17.4 %芒廷维尤: 17.4 %莆田: 0.5 %莆田: 0.5 %西宁: 15.5 %西宁: 15.5 %西安: 0.9 %西安: 0.9 %贵阳: 1.4 %贵阳: 1.4 %达州: 0.9 %达州: 0.9 %运城: 4.2 %运城: 4.2 %遵义: 0.5 %遵义: 0.5 %郑州: 0.5 %郑州: 0.5 %鄂州: 0.5 %鄂州: 0.5 %重庆: 0.5 %重庆: 0.5 %青岛: 0.9 %青岛: 0.9 %马鞍山: 0.5 %马鞍山: 0.5 %其他上海临汾乌兰察布佛山北京南京合肥吉林天津巴中常德延安张家口成都昆明晋城朝阳杭州桂林武汉沈阳洛杉矶济源淄博湖州盐城石家庄福州芒廷维尤莆田西宁西安贵阳达州运城遵义郑州鄂州重庆青岛马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (278) PDF downloads(31) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return