Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YIN Wenhua, LONG Shikang, HE Zhiyuan, ZHENG Yiyun, LIU Lijun, XIE Danping, ZHAN Wensen. IMPACT OF CO-INCINERATION OF MSWI WITH AGED REFUSE ON GASEOUS POLLUTANTS EMISSION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 76-80,87. doi: DOI:10.13205/j.hjgc.202207011
Citation: MAN Yidong, LI Dong, HU Siyang, HUO Jinfen. EFFECT OF INSOLUBLE HEXAVALENT CHROMIUM ON REMEDIATION OF HEAVILY CHROMIUM-CONTAMINATED SOIL BY FLUSHING REDUCTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 132-138,164. doi: DOI:10.13205/j.hjgc.202207019

EFFECT OF INSOLUBLE HEXAVALENT CHROMIUM ON REMEDIATION OF HEAVILY CHROMIUM-CONTAMINATED SOIL BY FLUSHING REDUCTION

doi: DOI:10.13205/j.hjgc.202207019
  • Received Date: 2021-09-16
    Available Online: 2022-09-02
  • To reveal the key factors that limit the remediation effectiveness of heavily chromium contaminated soil,the desorption kinetics,and insoluble Cr (Ⅵ) reduction experiments were carried out in this study.The results showed that leaching with citric acid could significantly reduce the concentration of insoluble Cr (Ⅵ) in soil samples at room temperature,and increasing the leaching temperature to 90℃ could further decrease the concentration of insoluble Cr (Ⅵ).The lower the concentration of insoluble Cr (Ⅵ) in the soil after leaching,the better the remediation effectiveness.For the soil samples used in this study,the concentration of Cr (Ⅵ) decreased from (1813.2±59.8) mg/kg to (99.1±8.8) mg/kg by high-temperature flushing with citric acid and high-temperature reduction with ferrous sulfate.In addition,the reduction of insoluble Cr (Ⅵ) by citric acid in the leaching experiment could be ignored and the residual citric acid in the soil sample had no significant effect on the detection results of Cr (Ⅵ) in soil.This study proved that the reduction effectiveness of insoluble Cr (Ⅵ) was the key limiting factor for the remediation of heavy chromium-contaminated soil,and provided a reference for the research and development of remediation technology for chromium contaminated soil.
  • [1]
    HU S Y, LI D, MAN Y D, et al. Evaluation of remediation of Cr (Ⅵ)-contaminated soils by calcium polysulfide:Long-term stabilization and mechanism studies[J]. Science of the Total Environment, 2021, 790:148140.
    [2]
    LI D, JI G Z, HU J, et al. Remediation strategy and electrochemistry flushing&reduction technology for real Cr (Ⅵ)-contaminated soils[J]. Chemical Engineering Journal, 2018, 334:1281-1288.
    [3]
    ASTM. Standard test method for the determination of hexavalent chromium in workplace air by ion chromatography and spectrophotometric measurement using 1,5-diphenylcarbazide[S]. West Conshohocken:ASTM, 2013.
    [4]
    生态环境部.土壤环境质量建设用地土壤污染风险管控标准(试行):GB 36600-2018[S].北京:中国环境科学出版社, 2018.
    [5]
    王廷涛,郭贝,赵志辉.铬污染土壤原位修复技术试验研究[J].中国环保产业, 2021, 26(1):61-64.
    [6]
    李丹丹,郝秀珍,周东美,等.淋洗法修复铬渣污染场地实验研究[J].农业环境科学学报, 2011, 30(12):2451-2457.
    [7]
    金紫缘,李民敬,冯亮,等.镉污染稻田土壤淋洗剂筛选、条件优化及淋洗废水处理[C]//中国环境科学学会2021年科学技术年会——环境工程技术创新与应用分会场.天津, 2021.
    [8]
    徐雷,代惠萍,魏树和.淋洗剂在重金属污染土壤修复中的研究进展[J].中国环境科学, 2021, 41(11):5237-5244.
    [9]
    赵庆辉,王兴润,张增强.地下水六价铬运移的仿真及场地修复限值探讨[J].环境工程, 2011, 29(2):16-19.
    [10]
    蒋越,李广辉,王东辉,等.天然有机酸和DTPA组合工艺对Cr (Ⅵ)污染土壤的淋洗修复[J].环境工程学报, 2020, 14(7):1903-1914.
    [11]
    HU S Y, LI D, QIN S Q, et al. Interference of sulfide with iron ions to the analysis of Cr (Ⅵ) by Method 3060a&Method 7196a[J]. Journal of Hazardous Materials, 2020, 398(5):122837.
    [12]
    陶美彤.高浓度铬污染土壤淋洗修复效果及影响因素的研究[D].长春:吉林大学, 2019.
    [13]
    湖南省环境保护厅.重金属污染场地土壤修复标准:DB43 T 1125-2016[S].湖南:湖南省环境保护厅, 2016.
    [14]
    EPA. Method 3060a, Alkaline Digestion for Hexavalent Chromium[S]. Washington, DC:U.S.EPA, 1996.
    [15]
    EPA. Method 7196a, Chromium, Hexavalent (Colorimetric)[S]. Washington, DC:U.S.EPA, 1992.
    [16]
    LI D, GUI C X, JI G Z, et al. An interpretation to Cr (Ⅵ) leaching concentration rebound phenomenon with time in ferrous-reduced Cr (Ⅵ)-bearing solid matrices[J]. Journal of Hazardous Materials, 2019, 378:120734.
    [17]
    李琛.有机酸还原六价铬反应动力学及其影响因素研究[D].南京:南京农业大学, 2006.
    [18]
    LI N, LI X, WANG C P, et al. Desorption of Cd (Ⅱ) from tourmaline at acidic conditions:kinetics, equilibrium and thermodynamics[J]. Journal of Environmental Chemical Engineering, 2016, 4(1):30-36.
    [19]
    TRAN H N, NGUYEN D T, LE G T, et al. Adsorption mechanism of hexavalent chromium onto layered double hydroxides-based adsorbents:a systematic in-depth review[J]. Journal of Hazardous Materials, 2019, 373(5):258-270.
    [20]
    TIAN C X, WANG D, WANG J X, et al. Desorption of hexavalent chromium from active aerobic granular sludge:Effects of operation parameters on granular bioactivity and stability[J]. Bioresource Technology Reports, 2020, 11:100457.
    [21]
    陈英旭,朱荫湄,袁可能,等.土壤中铬的化学行为研究Ⅱ.土壤对Cr (Ⅵ)吸附和还原动力学[J].环境科学学报, 1989, 9(2):137-143.
    [22]
    HO Y S, MCKAY G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34(5):451-465.
    [23]
    BULBUL M S, KANTAR C, KESKIN S. Role of major groundwater ions on reductive Cr (Ⅵ) immobilization in subsurface systems with pyrite[J]. Water, Air,&Soil Pollution, 2016, 227(3):72.
    [24]
    DAI C, ZUO X B, CAO B, et al. Homogeneous and heterogeneous (Fe<i>x, Cr1-x)(OH)3 precipitation:implications for Cr sequestration[J]. Environmental Science&Technology, 2016, 50(4):1741-1749.
    [25]
    PAPASSIOPI N, VAXEVANIDOU K, CHRISTOU C, et al. Synthesis, characterization and stability of Cr (Ⅲ) and Fe (Ⅲ) hydroxides[J]. Journal of Hazardous Materials, 2014, 264:490-497.
    [26]
    JAMES B R, BARTLETT R J. Behavior of chromium in soils. Ⅶ. Adsorption and reduction of hexavalent forms[J]. Jenvironqual, 1983, 12(2):177-181.
    [27]
    GABRIEL C, RAPTOPOULOU C P, TERZIS A, et al. pH-specific synthesis and spectroscopic, structural, and magnetic studies of a chromium (Ⅲ)-citrate species. Aqueous solution speciation of the binary chromium (Ⅲ)-citrate system[J]. Inorganic Chemistry, 2007, 46(8):2998-3009.
    [28]
    张佳,陈鸿汉,张岩坤,等.柠檬酸淋洗去除土壤中铬的实验研究[J].环境科学学报, 2015, 35(7):2247-2253.
    [29]
    张文艺,陈婕,朱雷鸣,等.腐解稻草DOM提取液洗脱六价铬污染土壤试验研究[J].土木与环境工程学报, 2020, 42(4):1-7.
    [30]
    PAUL R W, CARL D P. Effect of temperature, ionic strength, background electrolytes, and Fe (Ⅲ) on the reduction of hexavalent chromium by soil humic substances[J]. Environmental Science&Technology, 1996, 30(8):2470-2477.
    [31]
    LI D, SUN D L, HU S Y, et al. Conceptual design and experiments of electrochemistry-flushing technology for the remediation of historically Cr (Ⅵ)-contaminated soil[J]. Chemosphere, 2016, 144:1823-1830.
    [32]
    纪国柱.铬污染土壤焦亚硫酸钠电化学淋洗还原修复实验研究[D].重庆:重庆大学, 2018.
    [33]
    CHRYSOCHOOU M, FERREIRA D R, JOHNSTON C P. Calcium polysulfide treatment of Cr (Ⅵ)-contaminated soil[J]. Journal of Hazardous Materials, 2010, 179(3):650-657.
    [34]
    RASTAS A L, MAURICE C, KUMPIENE J, et al. The influence of temperature, pH/molarity and extractant on the removal of arsenic, chromium and zinc from contaminated soil[J]. Journal of Soils and Sediments, 2011, 11(8):1334-1344.
    [35]
    DIMITRIS D, MARIA C, HYUN M D, et al. Ettringite-induced heave in chromite ore processing residue (COPR) upon ferrous sulfate treatment[J]. Environmental Science&Technology, 2006, 40(18):5786-5792.
    [36]
    生态环境部.土壤和沉积物六价铬的测定碱溶液提取-火焰原子吸收分光光度法:HJ 1082-2019[S].北京:中国环境科学出版社, 2020.
    [37]
    秦仕强.经亚硫酸盐/焦亚硫酸盐处理的铬污染土壤中残留还原剂对Cr (Ⅵ)分析的影响研究[D].重庆:重庆大学, 2019.
    [38]
    HUG S J, LAUBSCHER H U, JAMES B R. Iron (Ⅲ) catalyzed photochemical reduction of chromium (Ⅵ) by oxalate and citrate in aqueous solutions[J]. Environmental Science&Technology, 1997, 31(1):160-170.
    [39]
    高卫国,钱林波,韩璐,等.锰铁氧体吸附及催化柠檬酸还原六价铬的过程及机理[J].环境化学, 2018, 37(7):1525-1533.
  • Relative Articles

    [1]SUN Yueyin, HUANG Qiong, ZHOU Jie, YU Xiaomeng, ZHU Jie, GU Mingyang, XU Lirui, YANG Bo, TAO Tao. PREPARATION OF VISIBLE LIGHT CATALYST AND PERFORMANCE ANALYSIS OF FORMALDEHYDE DEGRADATION OVER SILVER-BISMUTH MODIFIED TiO2 NANOMATERIAL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 146-155. doi: 10.13205/j.hjgc.202302020
    [2]LIU Ya, CHEN Jin-quan, YANG Zi-yue, JIN Shi-bo, FU Dong-tang, SHEN Shi-li. GROWTH AND PHYSIOLOGICAL INDEXES OF WHEAT SEEDLINGS UNER CADMIUM STRESS ALLEVIATED BY NANO TITANIUM DIOXIDE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 184-189,195. doi: 10.13205/j.hjgc.202105026
    [3]FU Rao, ZHANG Wen-long, FENG Jiang-tao, YAN Wei. SYNTHESIZATION OF ANATASE TiO2 SYNTHESIZED AT LOW TEMPERATURE, AND ITS ADSORPTION PERFORMANCE ON FLUORIDE ION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 70-76. doi: 10.13205/j.hjgc.202002009
    [4]CHEN Jun-wei, LI Li-li, FANG Zhi-huang, YE Ling-fen, ZHENG Jia-hui, WANG Fei-feng. DEGRADATION OF HUMIC ACID IN WATER BY ULTRAVIOLET PHOTOCATALYSIS OF TiO2/GO COMPOSITE NANOMATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 89-95. doi: 10.13205/j.hjgc.202008015
    [15]Wang Xiquan Zhao Dandan Yu Lihong, . STUDY ON DEGRADATION OF METHYLENE BLUE BY GRAPHENE/TiO2[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 38-42. doi: 10.13205/j.hjgc.201502008
  • Cited by

    Periodical cited type(12)

    1. 文玉玲,王加俊. 陈腐垃圾掺烧对生活垃圾焚烧厂飞灰稳定化的影响研究. 清洗世界. 2024(04): 47-50 .
    2. 王湘徽,朱悦,陈润生. 填埋场陈腐垃圾筛上物热值及掺烧对焚烧炉运行工况影响研究——以云南省某市陈腐垃圾掺烧为例. 环境卫生工程. 2024(02): 53-62 .
    3. 张效刚,齐添,宋树祥,陈彬荣,张玉飞,陈晓强,张乐,李慈花,李一鸣. 我国南方某生活垃圾填埋场存量垃圾开挖作业案例分析. 环境工程. 2024(05): 90-97 . 本站查看
    4. 唐剑云,肖信彤. 陈腐垃圾资源化技术研究. 环境保护与循环经济. 2024(06): 4-7 .
    5. 李敏,魏亮. 生活垃圾填埋场陈腐垃圾资源化利用研究进展. 中国资源综合利用. 2024(06): 162-164 .
    6. 曾武清,王予,卜庆国,马硕,白东明,张宗建,张鹏,马丹丹,王圣博,王润其,武丽雯,刘晨,马洪亭. 陈腐垃圾掺烧对垃圾炉焚烧特性的影响. 化工进展. 2024(08): 4642-4653 .
    7. 黄静颖,焦学军,龙吉生. 垃圾焚烧发电项目碳排放计算对比. 浙江大学学报(工学版). 2024(11): 2338-2346 .
    8. 杨旭,余昭胜,何玉荣,宾衍辉,马晓茜. 垃圾焚烧炉中城市生活垃圾掺烧高热值工业固废的数值模拟. 洁净煤技术. 2023(09): 98-108 .
    9. 李水江,张效刚,谈强,陈晓强,李耀晃,刘金海,张乐,张楠. 我国南方某生活垃圾填埋场存量垃圾直接开挖掺烧中试. 环境工程. 2023(08): 196-201 . 本站查看
    10. 孙子维,张雨轩,唐玉婷,王思琪,唐杰洪,马晓茜. 城市生活垃圾与陈腐垃圾掺烧的燃烧特性与反应动力学分析. 环境卫生工程. 2023(06): 1-10 .
    11. 朱浩,喻武,薛浩,马晓玲. 垃圾焚烧炉排炉掺烧工业有机固废运行优化调控研究. 环境卫生工程. 2023(06): 11-15 .
    12. 李德波,陈兆立,陈智豪,冯永新,黄梓淦,韦琛,马晓茜. 垃圾焚烧炉掺烧陈腐垃圾及其配风优化的数值模拟. 环境工程. 2022(11): 113-119 . 本站查看

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.2 %FULLTEXT: 8.2 %META: 86.2 %META: 86.2 %PDF: 5.6 %PDF: 5.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.6 %其他: 7.6 %其他: 1.1 %其他: 1.1 %上海: 10.2 %上海: 10.2 %东莞: 0.3 %东莞: 0.3 %临汾: 0.3 %临汾: 0.3 %兰州: 0.8 %兰州: 0.8 %北京: 4.2 %北京: 4.2 %十堰: 0.3 %十堰: 0.3 %南京: 4.8 %南京: 4.8 %南充: 0.3 %南充: 0.3 %南宁: 0.8 %南宁: 0.8 %南昌: 0.6 %南昌: 0.6 %台州: 1.1 %台州: 1.1 %合肥: 0.6 %合肥: 0.6 %吉林: 0.6 %吉林: 0.6 %周口: 0.3 %周口: 0.3 %天津: 1.4 %天津: 1.4 %安庆: 0.6 %安庆: 0.6 %宣城: 0.3 %宣城: 0.3 %宿州: 0.3 %宿州: 0.3 %常德: 0.6 %常德: 0.6 %平顶山: 0.3 %平顶山: 0.3 %广州: 0.8 %广州: 0.8 %延安: 0.3 %延安: 0.3 %张家口: 2.0 %张家口: 2.0 %成都: 2.0 %成都: 2.0 %扬州: 0.3 %扬州: 0.3 %无锡: 0.6 %无锡: 0.6 %昆明: 0.6 %昆明: 0.6 %晋城: 0.6 %晋城: 0.6 %朝阳: 0.3 %朝阳: 0.3 %杭州: 2.0 %杭州: 2.0 %桂林: 0.3 %桂林: 0.3 %榆林: 0.3 %榆林: 0.3 %武汉: 2.3 %武汉: 2.3 %济南: 0.3 %济南: 0.3 %济源: 0.6 %济源: 0.6 %淄博: 0.3 %淄博: 0.3 %深圳: 0.3 %深圳: 0.3 %温州: 0.3 %温州: 0.3 %湖州: 0.3 %湖州: 0.3 %湘潭: 0.3 %湘潭: 0.3 %滁州: 0.3 %滁州: 0.3 %漯河: 1.7 %漯河: 1.7 %焦作: 1.1 %焦作: 1.1 %甘孜: 0.3 %甘孜: 0.3 %石家庄: 1.1 %石家庄: 1.1 %福州: 0.8 %福州: 0.8 %秦皇岛: 0.3 %秦皇岛: 0.3 %芒廷维尤: 10.7 %芒廷维尤: 10.7 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.3 %苏州: 0.3 %衢州: 0.6 %衢州: 0.6 %西宁: 14.7 %西宁: 14.7 %西安: 1.1 %西安: 1.1 %贵阳: 0.6 %贵阳: 0.6 %赤峰: 0.8 %赤峰: 0.8 %运城: 2.5 %运城: 2.5 %遵义: 0.3 %遵义: 0.3 %郑州: 4.8 %郑州: 4.8 %重庆: 1.1 %重庆: 1.1 %长沙: 1.1 %长沙: 1.1 %长治: 0.3 %长治: 0.3 %雅安: 0.3 %雅安: 0.3 %青岛: 0.8 %青岛: 0.8 %鞍山: 2.0 %鞍山: 2.0 %马鞍山: 0.3 %马鞍山: 0.3 %其他其他上海东莞临汾兰州北京十堰南京南充南宁南昌台州合肥吉林周口天津安庆宣城宿州常德平顶山广州延安张家口成都扬州无锡昆明晋城朝阳杭州桂林榆林武汉济南济源淄博深圳温州湖州湘潭滁州漯河焦作甘孜石家庄福州秦皇岛芒廷维尤芝加哥苏州衢州西宁西安贵阳赤峰运城遵义郑州重庆长沙长治雅安青岛鞍山马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (337) PDF downloads(7) Cited by(15)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return