Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LI Qiushi, GUO Xiang, LIU Bin, LIN Fawei, ZHAO Yingxin. STUDY ON METHANE PRODUCTION BY THERMOPHILIC ANAEROBIC DIGESTION OF MUNICIPAL SLUDGE AND CORN STRAW[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 139-145. doi: DOI:10.13205/j.hjgc.202207020
Citation: HUI Cizhang, ZHANG Wenlong, WANG Yuming, TONG Jiaxin, LI Yi. A NOVEL MODE OF NEAR ZERO LIQUID DISCHARGE FOR HIGH-TECH ZONES:FIVE-LEVEL-TREATMENT&FIVE-LEVEL-REUSE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 193-199. doi: DOI:10.13205/j.hjgc.202207028

A NOVEL MODE OF NEAR ZERO LIQUID DISCHARGE FOR HIGH-TECH ZONES:FIVE-LEVEL-TREATMENT&FIVE-LEVEL-REUSE

doi: DOI:10.13205/j.hjgc.202207028
  • Received Date: 2021-04-16
    Available Online: 2022-09-02
  • Near zero liquid discharge (NZLD) of high-tech zone (HTZ) is an effective way to improve water resources utilization efficiency and promote industrial restructuring and upgrading.However,current NZLD research mainly focused on the development and improvement of unit treatment technology,and neglected the systematic NZLD scheme for an integrated zone,which restricted the practice and popularization of NZLD.To this end,taking the whole HTZ as the research object,on the basis of systematic analysis of water use and drainage characteristics of typical industries,a five-level-treatment&five-level-reuse NZLD mode was proposed,which was the coupling of in-situ treatment-reuse based on water quality,enterprise wastewater treatment-comprehensive reuse,zone wastewater plant treatment-municipal use,ecological treatment-ecological water supplement,regeneration treatment-industrial reuse.Key problems of the mode were also analyzed,such as the construction of an intelligent decision system,the development of water treatment technology,and the establishment of an operation guarantee system.The novel mode would provide a feasible and effective way for NZLD of high-tech zones.
  • [1]
    水利部.中国水资源公报[Z]. 2018.
    [2]
    国家发展和改革委员会,水利部.国家节水行动方案[Z]. 2019.
    [3]
    科学技术部. 2018年国家高新区创新发展统计分析[Z]. 2019.
    [4]
    国家发展和改革委员会,科学技术部,工业和信息化部,财政部,自然资源部,生态环境部,住房城乡建设部,水利部,农业农村部,国家市场监管总局.关于推进污水资源化利用的指导意见[Z]. 2021.
    [5]
    科学技术部.国家高新区绿色发展专项行动实施方案[Z]. 2021.
    [6]
    SONG W L, LEE L Y, LIU E Y, et al. Spatial variation of fouling behavior in high recovery nanofiltration for industrial reverse osmosis brine treatment towards zero liquid discharge[J]. Journal of Membrane Science, 2020, 609:118185.
    [7]
    LIU C, ZHU L, CHEN L. Effect of salt and metal accumulation on performance of membrane distillation system and microbial community succession in membrane biofilms[J]. Water Research, 2020, 177:115805.
    [8]
    WEN C X, WANG H, WANG L C, et al. The reduction of waste lubricant oil distillate through the enhancement of organics degradation by ozonation with elevated temperature and stable pH for the zero discharge[J]. Journal of Cleaner Production, 2020, 240:118194.
    [9]
    DEMIR-DUZ H, AYYILDIZ O, AKTURK A S, et al. Approaching zero discharge concept in refineries by solar-assisted photo-Fenton and photo-catalysis processes[J]. Applied Catalysis B:Environmental, 2019, 248:341-348.
    [10]
    KANG J H, SUN W, HU Y H, et al. The utilization of waste by-products for removing silicate from mineral processing wastewater via chemical precipitation[J]. Water Research, 2017, 125:318-324.
    [11]
    KANG J H, CHEN C, SUN W, et al. A significant improvement of scheelite recovery using recycled flotation wastewater treated by hydrometallurgical waste acid[J]. Journal of Cleaner Production, 2017, 151:419-426.
    [12]
    JAHANGIR M M R, FENTON O, MULLER C, et al. In situ denitrification and DNRA rates in groundwater beneath an integrated constructed wetland[J]. Water Research, 2017, 111:254-264.
    [13]
    张镭,刘福兴,蒋媛,等.人工湿地基质去除污染物的作用机制研究进展[J].上海农业学报, 2019, 35(2):121-126.
    [14]
    DENG C, JIANG W, ZHOU W J, et al. New superstructure-based optimization of property-based industrial water system[J]. Journal of Cleaner Production, 2018, 189:878-886.
    [15]
    ZHANG K L, ZHAO Y H, CAO H B, et al. Multi-scale water network optimization considering simultaneous intra-and inter-plant integration in steel industry[J]. Journal of Cleaner Production, 2018, 176:663-675.
    [16]
    JIANG W, ZHANG Z, DENG C, et al. Industrial park water system optimization with joint use of water utility subsystem[J]. Resources, Conservation&Recycling, 2019, 147:119-127.
    [17]
    张凯莉.典型钢铁工业园水网络优化[D].北京:中国科学院大学, 2018.
    [18]
    叶全梁.基于水足迹理论和虚拟水贸易的城市水资源配置研究[D].南京:河海大学, 2018.
    [19]
    刘柏音,刘孝富,王维.长江生态环境保护修复智慧决策平台构建与初步设计[J].环境科学研究, 2020, 33(5):1276-1283.
    [20]
    曲久辉,赵进才,任南琪,等.城市污水再生与循环利用的关键基础科学问题[J].中国基础科学, 2017, 19(1):6-12.
  • Relative Articles

    [1]ZHANG Jinfeng, XU Chengbin, GUO Fei. A BIBLIOMETRIC STUDY OF ANTIMONY ECOLOGICAL ENVIRONMENTAL RISK AND WATER QUALITY BENCHMARKING TREND[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 207-214. doi: 10.13205/j.hjgc.202403026
    [2]CHEN Da, LIU Chunting, WU Mengying, YANG Xiaojun, GUO Xiang. RESEARCH ADVANCES AND HOTSPOT EVOLUTION OF SUSTAINABLE AVIATION FUEL: A VISUAL ANALYSIS BASED ON BIBLIOMETRICS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 132-139. doi: 10.13205/j.hjgc.202410016
    [3]LIAO Chengfeng, LIU Yuchen, TANG Yuting, TANG Jiehong, MA Xiaoqian. LIFE CYCLE ASSESSMENT AND TECHNO-ECONOMIC ANALYSIS OF PRODUCING AMMONIA BY ALGAL BIOMASS GASIFICATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 187-194. doi: 10.13205/j.hjgc.202305025
    [4]LIU Haizhu, BAI Junhong, WANG Yaqi, ZHANG Ling, LIU Zhe. RESEARCH PROGRESS AND HOTSPOT ANALYSIS OF SEDIMENT MICROPLASTICS BASED ON CITESPACE LITERATURE METROLOGY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 42-50. doi: 10.13205/j.hjgc.202301006
    [5]LI Shefeng, DU Shaoxia, BAO Shenxu, YAN Shuiping, LIU Ziyang. BIBLIOMETRIC ANALYSIS AND DEVELOPMENT TREND DISCUSSION OF CONTAMINATED SOIL REMEDIATION TECHNOLOGY IN INTERNATIONAL RESEARCH[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 329-336,342. doi: 10.13205/j.hjgc.202312041
    [6]CHEN Xueming, LI Fuyi. BIBLIOMETRIC ANALYSIS OF N2O RESEARCH IN WASTEWATER SYSTEMS IN 2000-2020[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 92-96,279. doi: 10.13205/j.hjgc.202206012
    [7]WU Weixia, HUANG Caihong, TANG Zhurui, LI Yanhong, ZHU Lin, MA Caiyun. RESEARCH ADVANCE ON COMPOST ODOR IN 2001-2020 BASED ON BIBLIOMETRICS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 211-221. doi: 10.13205/j.hjgc.202211029
    [8]ZHANG Zekun, WAN Dan, XU Hao, YAN Wei, JIN Xiaoliang. RESEARCH STATUS AND DEVELOPING TREND OF ELECTRO-CATALYTIC REDUCTION OF CO2 BASED ON BIBLIOMETRIC[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 222-230. doi: 10.13205/j.hjgc.202211030
    [9]ZHANG Ze, ZHAO Hong-jun, MENG Jie, HONG Chen, LI Yi-fei. RESEARCH PROGRESS OF BIOMASS PYROLYSIS AND BIO OIL UPGRADING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 161-171. doi: 10.13205/j.hjgc.202103023
    [10]HE Yuan-pu, FAN Hai-tao, LIU Guo-hua, QI Lu, XU Xiang-long, SHAO Yu-ting, WANG Hong-chen. STATUS AND TREND OF AERATION CONTROL STRATEGY DURING BIOLOGICAL WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 34-41,121. doi: 10.13205/j.hjgc.202106006
    [11]WANG Yong-lin, ZHANG Chuan-he, ZHAO Yu-peng, WU Liang, GUO Bing, YANG Ting, WANG Xin-xin. TREND ANALYSIS OF SOIL BIOREMEDIATION BASED ON WEB OF SCIENCE DATABASE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 199-204. doi: 10.13205/j.hjgc.202109028
    [12]SONG Da-gang, LI Hui-bin, WANG Jiu-chen, MEI Zi-li, RAN Yi. BIBLIOMETRIC ANALYSIS OF RESEARCH TRENDS ON RURAL WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 16-24,30. doi: 10.13205/j.hjgc.202105003
    [13]CHENG Lu-yao, LI Juan, WANG Liang-jie, DU Ji-jun, ZENG Ping, ZHAO Xiu-mei, WANG Chen-hao. DEVELOPMENT TREND ANALYSIS OF BIOAUGMENTATION TECHNOLOGY FOR WASTEWATER TREATMENT BASED ON BIBLIOMETRIC[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 40-47. doi: 10.13205/j.hjgc.202103006
    [17]Shen Lei Zhuang Huisheng, . STUDY ON COMPREHENSIVE RISK ASSESSMENT OF BIOMASS GASIFICATION POWER GENERATION INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 137-141. doi: 10.13205/j.hjgc.201504029
    [18]Li Shanshan Zhang Wenyu Sun Changhong Zhang Nan Xue Niantao, . STATUS AND TRENDS ANALYSIS ON REMEDIATION OF POLLUTED SOIL IN CHINA BASED ON LITERATURE MOTROLOGY[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 160-165. doi: 10.13205/j.hjgc.201505035
  • Cited by

    Periodical cited type(4)

    1. 李雷明,葛飞,王建萍,陈文娟,王毓菁. 基于文献计量的盐湖研究进展及前沿态势分析. 盐湖研究. 2024(02): 80-89 .
    2. 辛泊达,吕连宏,王斯一,董京京,张楠,杨超. 基于文献计量分析的生物质能源领域研究进展. 中国环境科学. 2024(04): 1875-1884 .
    3. 陈达,刘春婷,吴梦萦,杨晓军,郭祥. 可持续航空燃料研究趋势及热点演进:基于文献计量的可视化分析. 环境工程. 2024(10): 132-139 . 本站查看
    4. 邓安楠,陶雪,熊小燕,邓艳霞,邹其玲. 基于文献计量的微塑料研究态势分析. 广东化工. 2023(22): 67-69 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.5 %FULLTEXT: 13.5 %META: 83.8 %META: 83.8 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.2 %其他: 13.2 %其他: 1.3 %其他: 1.3 %上海: 0.7 %上海: 0.7 %东莞: 2.3 %东莞: 2.3 %临汾: 0.3 %临汾: 0.3 %伊斯坦布尔: 1.0 %伊斯坦布尔: 1.0 %保定: 0.3 %保定: 0.3 %北京: 9.6 %北京: 9.6 %南京: 0.3 %南京: 0.3 %南通: 0.3 %南通: 0.3 %厦门: 1.0 %厦门: 1.0 %合肥: 0.3 %合肥: 0.3 %呼和浩特: 0.7 %呼和浩特: 0.7 %哈尔滨: 0.3 %哈尔滨: 0.3 %嘉兴: 0.3 %嘉兴: 0.3 %天津: 3.6 %天津: 3.6 %太原: 0.7 %太原: 0.7 %常州: 2.0 %常州: 2.0 %常德: 0.7 %常德: 0.7 %广州: 2.3 %广州: 2.3 %弗吉尼亚州: 0.3 %弗吉尼亚州: 0.3 %张家口: 3.0 %张家口: 3.0 %成都: 1.3 %成都: 1.3 %扬州: 1.0 %扬州: 1.0 %无锡: 0.3 %无锡: 0.3 %昆明: 0.7 %昆明: 0.7 %晋城: 0.7 %晋城: 0.7 %朝阳: 0.3 %朝阳: 0.3 %杭州: 1.0 %杭州: 1.0 %武威: 0.3 %武威: 0.3 %武汉: 3.0 %武汉: 3.0 %洛阳: 0.3 %洛阳: 0.3 %济源: 0.7 %济源: 0.7 %深圳: 0.3 %深圳: 0.3 %温州: 0.7 %温州: 0.7 %湖州: 1.0 %湖州: 1.0 %漯河: 1.7 %漯河: 1.7 %焦作: 1.0 %焦作: 1.0 %石家庄: 0.7 %石家庄: 0.7 %福州: 0.7 %福州: 0.7 %芒廷维尤: 18.8 %芒廷维尤: 18.8 %芝加哥: 3.0 %芝加哥: 3.0 %荆州: 0.3 %荆州: 0.3 %衢州: 0.7 %衢州: 0.7 %西宁: 6.3 %西宁: 6.3 %贵阳: 0.7 %贵阳: 0.7 %运城: 3.0 %运城: 3.0 %遵义: 0.3 %遵义: 0.3 %郑州: 2.6 %郑州: 2.6 %重庆: 0.7 %重庆: 0.7 %铁岭: 0.3 %铁岭: 0.3 %长沙: 1.0 %长沙: 1.0 %长治: 0.3 %长治: 0.3 %阜新: 0.3 %阜新: 0.3 %随州: 0.3 %随州: 0.3 %青岛: 1.0 %青岛: 1.0 %马鞍山: 0.3 %马鞍山: 0.3 %其他其他上海东莞临汾伊斯坦布尔保定北京南京南通厦门合肥呼和浩特哈尔滨嘉兴天津太原常州常德广州弗吉尼亚州张家口成都扬州无锡昆明晋城朝阳杭州武威武汉洛阳济源深圳温州湖州漯河焦作石家庄福州芒廷维尤芝加哥荆州衢州西宁贵阳运城遵义郑州重庆铁岭长沙长治阜新随州青岛马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (266) PDF downloads(5) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return