Citation: | LI Ruiting, ZHANG Wenrui, LI Aimin, SHUANG Chendong, ZHOU Qing, SHI Peng. REGULATORY MECHANISM OF INTERFACE PROPERTIES OF ENVIRONMENTAL FUNCTIONAL MATERIALS ON BIOFILM FORMATION AND METABOLIC FUNCTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 206-221,178. doi: DOI:10.13205/j.hjgc.202207030 |
[1] |
COGAN N G. Microbial biofilms:persisters, tolerance and dosing[C]//1st ISIS International Symposium on Interdisciplinary Science. LA, 2005:190-197.
|
[2] |
KOLTER R. Surfacing views of biofilm biology[J]. Trends in Microbiology, 2005, 13(1):1-2.
|
[3] |
BHINU V S. Insight into biofilm-associated microbial life[J]. Journal of Molecular Microbiology and Biotechnology, 2005, 10(1):15-21.
|
[4] |
雒江菡.大型原水输水管道水质模拟及生物膜净水功能研究[D].哈尔滨:哈尔滨工业大学, 2016.
|
[5] |
PRATT L A, KOLTER R. Genetic analysis of Escherichia coli biofilm formation:roles of flagella, motility, chemotaxis and type I pili[J]. Molecular Microbiology, 1998, 30(2):285-293.
|
[6] |
HONG S H, HEGDE M, KIM J, et al. Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device[J]. Nature Communications, 2012, 3:613.
|
[7] |
张天震,刘伶普,李文超,等.群体感应系统介导细菌生物膜形成的研究进展[J].生物加工过程, 2020, 18(2):177-183.
|
[8] |
PLOUX L, PONCHE A, ANSELME K. Bacteria/material interfaces:role of the material and cell wall properties[J]. Journal of Adhesion Science and Technology, 2010, 24(13/14):2165-2201.
|
[9] |
LE T H, NG C, TRAN N H, et al. Removal of antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in municipal wastewater by membrane bioreactor systems[J]. Water Research, 2018, 145:498-508.
|
[10] |
BARNHARST T, RAJENDRAN A, HU B. Bioremediation of synthetic intensive aquaculture wastewater by a novel feed-grade composite biofilm[J]. International Biodeterioration&Biodegradation, 2018, 126:131-142.
|
[11] |
刘世红,田耀华.橡胶树抗寒性研究现状与展望[J].广东农业科学, 2009(11):26-28.
|
[12] |
BHATTACHARYYA P N, JHA D K. Plant growth-promoting rhizobacteria (PGPR):emergence in agriculture[J]. World Journal of Microbiology&Biotechnology, 2012, 28(4):1327-1350.
|
[13] |
刘慧娜,孙吉慧,沈加艳.给水管网中管壁生物膜对水质二次污染的影响[J].环保科技, 2009, 15(4):9-13.
|
[14] |
CHAO Y S, MARKS L R, PETTIGREW M M, et al. Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease[J]. Frontiers in Cellular and Infection Microbiology, 2015, 4:194.
|
[15] |
WANG Z J, SHEN Y, HAAPASALO M. Dental materials with antibiofilm properties[J]. Dental Materials, 2014, 30(2):E1-E16.
|
[16] |
XU D K, XIA J, ZHOU E Z, et al. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm[J]. Bioelectrochemistry, 2017, 113:1-8.
|
[17] |
HALL-STOODLEY L, STOODLEY P. Biofilm formation and dispersal and the transmission of human pathogens[J]. Trends in Microbiology, 2005, 13(1):7-10.
|
[18] |
BAUMGARTEN T, SPERLING S, SEIFERT J, et al. Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation[J]. Applied and Environmental Microbiology, 2012, 78(17):6217-6224.
|
[19] |
张明露,徐绍峰,徐梦瑶,等.给水管网多相界面中微生物表面疏水性研究[J].中国环境科学, 2019, 39(11):4823-4830.
|
[20] |
CERCA N, PIER G B, VILANOVA M, et al. Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis[J]. Research in Microbiology, 2005, 156(4):506-514.
|
[21] |
SCHIFFER C, HILGARTH M, EHRMANN M, et al. Bap and cell surface hydrophobicity are important factors in Staphylococcus xylosus biofilm formation[J]. Frontiers in Microbiology, 2019, 10:1387.
|
[22] |
祝泽兵,吴晨光,钟丹,等.管材和流速对供水管道生物膜形成的影响[J].哈尔滨工业大学学报, 2014, 46(10):31-36.
|
[23] |
NEJADNIK M R, van DER MEI H C, NORDE W, et al. Bacterial adhesion and growth on a polymer brush-coating[J]. Biomaterials, 2008, 29(30):4117-4121.
|
[24] |
WEI T, YU Q, CHEN H. Responsive and synergistic antibacterial coatings:fighting against bacteria in a smart and effective way[J]. Advanced Healthcare Materials, 2019, 8(3):1801381.
|
[25] |
PARK H H, SUN K, SEONG M, et al. Lipid-hydrogel-nanostructure hybrids as robust biofilm-resistant polymeric materials[J]. ACS Macro Letters, 2019, 8(1):64-69.
|
[26] |
RODRIGUEZ-MELCON C, ALONSO-CALLEJA C, CAPITA R. Architecture and viability of the biofilms formed by nine Listeria strains on various hydrophobic and hydrophilic materials[J]. Applied Sciences-Basel, 2019, 9(23):5256.
|
[27] |
ANDERSEN T E, KINGSHOTT P, PALARASAH Y, et al. A flow chamber assay for quantitative evaluation of bacterial surface colonization used to investigate the influence of temperature and surface hydrophilicity on the biofilm forming capacity of uropathogenic Escherichia coli[J]. Journal of Microbiological Methods, 2010, 81(2):135-140.
|
[28] |
PONTES C, ALVES M, SANTOS C, et al. Can sophorolipids prevent biofilm formation on silicone catheter tubes?[J]. International Journal of Pharmaceutics, 2016, 513(1/2):697-708.
|
[29] |
YU J, KIM D, LEE T. Microbial diversity in biofilms on water distribution pipes of different materials[J]. Water Science and Technology, 2010, 61(1):163-171.
|
[30] |
BEYTH N, BAHIR R, MATALON S, et al. Streptococcus mutans biofilm changes surface-topography of resin composites[J]. Dental Materials, 2008, 24(6):732-736.
|
[31] |
SINGH A V, VYAS V, PATIL R, et al. Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation[J]. PLoS One, 2011, 6(9):e25029.
|
[32] |
SAKAMOTO A, TERUI Y, HORIE C, et al. Antibacterial effects of protruding and recessed shark skin micropatterned surfaces of polyacrylate plate with a shallow groove[J]. Fems Microbiology Letters, 2014, 361(1):10-16.
|
[33] |
MANN E E, MANNA D, METTETAL M R, et al. Surface micropattern limits bacterial contamination[J]. Antimicrobial Resistance and Infection Control, 2014, 3:28.
|
[34] |
DOLID A, GOMES L C, MERGULHAO F J, et al. Combining chemistry and topography to fight biofilm formation:Fabrication of micropatterned surfaces with a peptide-based coating[J]. Colloids and Surfaces B-Biointerfaces, 2020, 196:111365.
|
[35] |
CHIEN H W, CHEN X Y, TSAI W P, et al. Inhibition of biofilm formation by rough shark skin-patterned surfaces[J]. Colloids and Surfaces B-Biointerfaces, 2020, 186:110738.
|
[36] |
IZQUIERDO-BARBA I, GARCIA-MARTIN J M, ALVAREZ R, et al. Nanocolumnar coatings with selective behavior towards osteoblast and Staphylococcus aureus proliferation[J]. Acta Biomaterialia, 2015, 15:20-28.
|
[37] |
EPSTEIN A K, HONG D, KIM P, et al. Biofilm attachment reduction on bioinspired, dynamic, micro-wrinkling surfaces[J]. New Journal of Physics, 2013, 15:095018.
|
[38] |
HOCHBAUM A I, AIZENBERG J. Bacteria pattern spontaneously on periodic nanostructure arrays[J]. Nano Letters, 2010, 10(9):3717-3721.
|
[39] |
SINGH S P, RAMANAN S, KAUFMAN Y, et al. Laser-induced graphene biofilm inhibition:texture does matter[J]. ACS Applied Nano Materials, 2018, 1(4):1713-1720.
|
[40] |
GOULTER R M, GENTLE I R, DYKES G A. Issues in determining factors influencing bacterial attachment:a review using the attachment of Escherichia coli to abiotic surfaces as an example[J]. Letters in Applied Microbiology, 2009, 49(1):1-7.
|
[41] |
SONG F, KOO H, REN D. Effects of material properties on bacterial adhesion and biofilm formation[J]. Journal of Dental Research, 2015, 94(8):1027-1034.
|
[42] |
RZHEPISHEVSKA O, HAKOBYAN S, RUHAL R, et al. The surface charge of anti-bacterial coatings alters motility and biofilm architecture[J]. Biomaterials Science, 2013, 1(6):589-602.
|
[43] |
TARJANYI-SZIKORA S, OLAH J, MAKO M, et al. Comparison of different granular solids as biofilm carriers[J]. Microchemical Journal, 2013, 107:101-107.
|
[44] |
TERADA A, OKUYAMA K, NISHIKAWA M, et al. The effect of surface charge property on Escherichia coli initial adhesion and subsequent biofilm formation[J]. Biotechnology and Bioengineering, 2012, 109(7):1745-1754.
|
[45] |
TERADA A, YUASA A, KUSHIMOTO T, et al. Bacterial adhesion to and viability on positively charged polymer surfaces[J]. Microbiology-Sgm, 2006, 152:3575-3583.
|
[46] |
江宇勤,厉炯慧,方治国.多孔填料特性对生物膜形成影响[J].环境科学, 2020, 41(8):3684-3690.
|
[47] |
CAMPOCCIA D, MONTANARO L, ARCIOLA C R. A review of the biomaterials technologies for infection-resistant surfaces[J]. Biomaterials, 2013, 34(34):8533-8554.
|
[48] |
GAO Q, LI P, ZHAO H Y, et al. Methacrylate-ended polypeptides and polypeptoids for antimicrobial and antifouling coatings[J]. Polymer Chemistry, 2017, 8(41):6386-6397.
|
[49] |
MURATA H, KOEPSEL R R, MATYJASZEWSKI K, et al. Permanent, non-leaching antibacterial surfaces-2:how high density cationic surfaces kill bacterial cells[J]. Biomaterials, 2007, 28(32):4870-4879.
|
[50] |
CHAVANT P, MARTINIE B, MEYLHEUC T, et al. Listeria monocytogenes LO28:surface physicochemical properties and ability to form biofilms at different temperatures and growth phases[J]. Applied and Environmental Microbiology, 2002, 68(2):728-737.
|
[51] |
CHUA L Y, YEO S H. Surface bio-magnetism on bacterial cells adhesion and surface proteins secretion[J]. Colloids and Surfaces B-Biointerfaces, 2005, 40(1):45-49.
|
[52] |
卫晓阳, MASOUMEH M,杨丽景,等.磁场对纯Cu微生物腐蚀行为的影响[J].中国腐蚀与防护学报, 2019, 39(6):484-494.
|
[53] |
周慧慧.磁性材料和磁场强化微生物电化学系统电子转移的机理研究[D].哈尔滨:哈尔滨工业大学, 2020.
|
[54] |
SAUNDERS R. Static magnetic fields:animal studies[J]. Progress in Biophysics&Molecular Biology, 2005, 87(2/3):225-239.
|
[55] |
QUAN K C, ZHANG Z X, CHEN H, et al. Artificial channels in an infectious biofilm created by magnetic nanoparticles enhanced bacterial killing by antibiotics[J]. Small, 2019, 15(39):1902313.
|
[56] |
LI L L, YU P F, WANG X F, et al. Enhanced biofilm penetration for microbial control by polyvalent phages conjugated with magnetic colloidal nanoparticle clusters (cncs)[J]. Environmental Science-Nano, 2017, 4(9):1817-1826.
|
[57] |
QUAN K C, ZHANG Z X, REN Y J, et al. Homogeneous distribution of magnetic, antimicrobial-carrying nanoparticles through an infectious biofilm enhances biofilm-killing efficacy[J]. Acs Biomaterials Science&Engineering, 2020, 6(1):205-212.
|
[58] |
VO D T, SABRINA S, LEE C K. Silver deposited carboxymethyl chitosan-grafted magnetic nanoparticles as dual action deliverable antimicrobial materials[J]. Materials Science&Engineering C-Materials for Biological Applications, 2017, 73:544-551.
|
[59] |
田小飞,张欣.稳态强磁场的细胞生物学效应[J].物理学报, 2018, 67(14):19-29.
|
[60] |
季晓妮,汲平.静磁场的细胞生物学效应的研究进展[J].口腔颌面修复学杂志, 2010, 11(2):126-128.
|
[61] |
智丽媛,杜莉.静磁场的细胞生物学效应的研究[J].广东牙病防治, 2008(增刊1):650-652.
|
[62] |
WANG Z B, LIU X L, NI S Q, et al. Weak magnetic field:a powerful strategy to enhance partial nitrification[J]. Water Research, 2017, 120:190-198.
|
[63] |
LEHTOLA M J, MIETTINEN K T, KEINANEN M M, et al. Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes[J]. Water Research, 2004, 38(17):3769-3779.
|
[64] |
海景,温勇,皮丕辉,等.营养缓释型生物填料的制备及在废水处理中的应用[J].中山大学学报(自然科学版), 2008,(1):68-72.
|
[65] |
LIU Y H, KOHNO T, TSUBOI R, et al. Acidity-induced release of zinc ion from BioUnion (TM) filler and its inhibitory effects against Streptococcus mutans[J]. Dental Materials Journal, 2020, 39(4):547-553.
|
[66] |
CUMMINS D. Zinc citrate triclosan-a new anti-plaque system for the control of plaque and the prevention of gingivitis-short-term clinical and mode of action studies[J]. Journal of Clinical Periodontology, 1991, 18(6):455-461.
|
[67] |
JIN G D, CAO H L, QIAO Y Q, et al. Osteogenic activity and antibacterial effect of zinc ion implanted titanium[J]. Colloids and Surfaces B-Biointerfaces, 2014, 117:158-165.
|
[68] |
HAHNEL S, IONESCU A C, CAZZANIGA G, et al. Biofilm formation and release of fluoride from dental restorative materials in relation to their surface properties[J]. Journal of Dentistry, 2017, 60:14-24.
|
[69] |
LIAO Y, BRANDT B W, LI J Y, et al. Fluoride resistance in Streptococcus mutans:a mini review[J]. Journal of Oral Microbiology, 2017, 9(1):1344509.
|
[70] |
PANDIT S, JUNG J E, CHOI H M, et al. Effect of brief periodic fluoride treatments on the virulence and composition of a cariogenic biofilm[J]. Biofouling, 2018, 34(1):53-61.
|
[71] |
FLEMING G, AVEYARD J, FOTHERGILL J L, et al. Nitric oxide releasing polymeric coatings for the prevention of biofilm formation[J]. Polymers, 2017, 9(11):601.
|
[72] |
PRIVETT B J, NUTZ S T, SCHOENFISCH M H. Efficacy of surface-generated nitric oxide against Candida albicans adhesion and biofilm formation[J]. Biofouling, 2010, 26(8):973-983.
|
[73] |
BARRAUD N, KELSO M J, RICE S A, et al. Nitric Oxide:a key mediator of biofilm dispersal with applications in infectious diseases[J]. Current Pharmaceutical Design, 2015, 21(1):31-42.
|
[74] |
张素佳,王海波,赵丹,等.不同管网腐蚀与水质稳定性中试研究[J].中国给水排水, 2018, 34(13):66-70.
|
[75] |
董耀华,贺中意,郭娜,等.海洋微生物在船舶用结构钢表面附着成膜过程及其腐蚀研究[J].海洋学研究, 2015, 33(1):39-44.
|
[76] |
MCNEILL L S, EDWARDS M. Iron pipe corrosion in distribution systems[J]. Journal American Water Works Association, 2001, 93(7):88-100.
|
[77] |
WEBER K A, ACHENBACH L A, COATES J D. Microorganisms pumping iron:anaerobic microbial iron oxidation and reduction[J]. Nature Reviews Microbiology, 2006, 4(10):752-764.
|
[78] |
WANG H B, HU C, HAN L C, et al. Effects of microbial cycling of Fe (Ⅱ)/Fe (Ⅲ) and Fe/N on cast iron corrosion in simulated drinking water distribution systems[J]. Corrosion Science, 2015, 100:599-606.
|
[79] |
WANG H B, HU C, ZHANG L L, et al. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems[J]. Water Research, 2014, 65:362-370.
|
[80] |
PROCOPIO L. The role of biofilms in the corrosion of steel in marine environments[J]. World Journal of Microbiology&Biotechnology, 2019, 35(5):73.
|
[81] |
MELCHERS R E, JEFFREY R J. Accelerated low water corrosion of steel piling in harbours[J]. Corrosion Engineering Science and Technology, 2013, 48(7):496-505.
|
[82] |
YIN Q D, WU G X. Advances in direct interspecies electron transfer and conductive materials:electron flux, organic degradation and microbial interaction[J]. Biotechnology Advances, 2019, 37(8):107443.
|
[83] |
李政,张珩琳,范书伶,等.金属元素与环境微生物的互作关系研究进展[J].应用与环境生物学报, 2020, 26(4):836-843.
|
[84] |
LIU P P, LIANG P, JIANG Y, et al. Stimulated electron transfer inside electroactive biofilm by magnetite for increased performance microbial fuel cell[J]. Applied Energy, 2018, 216:382-388.
|
[85] |
VIGGI C C, ROSSETTI S, FAZI S, et al. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation[J]. Environmental Science&Technology, 2014, 48(13):7536-7543.
|
[86] |
JEONG H E, KIM I, KARAM P, et al. Bacterial recognition of silicon nanowire arrays[J]. Nano Letters, 2013, 13(6):2864-2869.
|
[87] |
ZHANG P, LIU J, QU Y P, et al. Nanomaterials for facilitating microbial extracellular electron transfer:recent progress and challenges[J]. Bioelectrochemistry, 2018, 123:190-200.
|
[88] |
刘姝睿,吴雪娥,王远鹏.纳米材料介导微生物胞外电子传递过程的研究进展[J].化工学报,2021,72(7):3576-3589.
|
[89] |
XIE X, YE M, HU L B, et al. Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes[J]. Energy&Environmental Science, 2012, 5(1):5265-5270.
|
[90] |
ZOU L, HUANG Y H, WU X, et al. Synergistically promoting microbial biofilm growth and interfacial bioelectrocatalysis by molybdenum carbide nanoparticles functionalized graphene anode for bioelectricity production[J]. Journal of Power Sources, 2019, 413:174-181.
|
[91] |
XU L C, WO Y, MEYERHOFF M E, et al. Inhibition of bacterial adhesion and biofilm formation by dual functional textured and nitric oxide releasing surfaces[J]. Acta Biomaterialia, 2017, 51:53-65.
|
[92] |
张盾,吴佳佳.海洋环境微生物腐蚀机理研究进展[J].海洋与湖沼, 2020, 51(4):821-828.
|
[93] |
VALERO D, RICO C, CANTO-CANCHE B, et al. Enhancing biochemical methane potential and enrichment of specific electroactive communities from nixtamalization wastewater using granular activated carbon as a conductive material[J]. Energies, 2018, 11(8):2101.
|
[94] |
BYRNE J M, KLUEGLEIN N, PEARCE C, et al. Redox cycling of Fe (Ⅱ) and Fe (Ⅲ) in magnetite by Fe-metabolizing bacteria[J]. Science, 2015, 347(6229):1473-1476.
|
[95] |
MIAO L Z, WANG P F, HOU J, et al. Distinct community structure and microbial functions of biofilms colonizing microplastics[J]. Science of the Total Environment, 2019, 650:2395-2402.
|
[96] |
PHILIPPOT L, SPOR A, HENAULT C, et al. Loss in microbial diversity affects nitrogen cycling in soil[J]. Isme Journal, 2013, 7(8):1609-1619.
|
[97] |
GIRVAN M S, CAMPBELL C D, KILLHAM K, et al. Bacterial diversity promotes community stability and functional resilience after perturbation[J]. Environmental Microbiology, 2005, 7(3):301-313.
|
[98] |
WU X J, PAN J, LI M, et al. Selective enrichment of bacterial pathogens by microplastic biofilm[J]. Water Research, 2019, 165:114979.
|
[99] |
YOSHIDA S, HIRAGA K, TAKEHANA T, et al. A bacterium that degrades and assimilates poly (ethylene terephthalate)[J]. Science, 2016, 351(6278):1196-1199.
|
[100] |
LI W Y, TAN Q W, ZHOU W, et al. Impact of substrate material and chlorine/chloramine on the composition and function of a young biofilm microbial community as revealed by high-throughput 16S rRNA sequencing[J]. Chemosphere, 2020, 242:125310.
|
[101] |
LIU R Y, ZHU J G, YU Z S, et al. Molecular analysis of long-term biofilm formation on PVC and cast iron surfaces in drinking water distribution system[J]. Journal of Environmental Sciences, 2014, 26(4):865-874.
|
[102] |
QIN Z R, ZHAO Z H, JIAO W T, et al. Phenanthrene removal and response of bacterial community in the combined system of photocatalysis and PAH-degrading microbial consortium in laboratory system[J]. Bioresource Technology, 2020, 301:122736.
|
[103] |
JI Y B, TAN C, CUI D, et al. Enhanced effects of tourmaline on moving bed biofilm reactor-based partial nitrification process[J]. Journal of Environmental Engineering, 2019, 145(4):04019009.
|
[104] |
肖坤,郝婧薇,王艺,等.循环水养殖系统微滤机过滤对调节水体细菌群落结构的影响[J].渔业现代化, 2021, 48(3):67-73.
|
[105] |
SHI J X, HAN Y X, XU C Y, et al. Enhanced biodegradation of coal gasification wastewater with anaerobic biofilm on polyurethane (PU), powdered activated carbon (PAC), and biochar[J]. Bioresource Technology, 2019, 289:121487.
|
[106] |
WANG R, XU Q, CHEN C L, et al. Microbial nitrogen removal in synthetic aquaculture wastewater by fixed-bed baffled reactors packed with different biofilm carrier materials[J]. Bioresource Technology, 2021, 331:125045.
|
[107] |
FU Y, PENG H, LIU J, et al. Occurrence and quantification of culturable and viable but non-culturable (VBNC) pathogens in biofilm on different pipes from a metropolitan drinking water distribution system[J]. The Science of the Total Environment, 2020:142851.
|
[108] |
GIAO M S, WILKS S A, KEEVIL C W. Influence of copper surfaces on biofilm formation by Legionella pneumophila in potable water[J]. Biometals, 2015, 28(2):329-339.
|
[109] |
MITRA D, KANG E T, NEOH K G. Antimicrobial copper-based materials and coatings:potential multifaceted biomedical applications[J]. ACS Applied Materials&Interfaces, 2020, 12(19):21159-21182.
|
[110] |
MAERTENS L, CONINX I, CLAESEN J, et al. Copper resistance mediates long-term survival of Cupriavidus metalliduransin wet contact with metallic copper[J]. Frontiers in Microbiology, 2020, 11:1208.
|
[111] |
O'TOOLE G, KAPLAN H B, KOLTER R. Biofilm formation as microbial development[J]. Annual Review of Microbiology, 2000, 54:49-79.
|
[112] |
WANG J P, LI G Y, YIN H L, et al. Bacterial response mechanism during biofilm growth on different metal material substrates:EPS characteristics, oxidative stress and molecular regulatory network analysis[J]. Environmental Research, 2020, 185:109141-109151.
|
[113] |
PARTOAZAR A, TALAEI N, BAHADOR A, et al. Antibiofilm activity of natural zeolite supported NanoZnO:inhibition of Esp gene expression of Enterococcus faecalis[J]. Nanomedicine, 2019, 14(6):675-687.
|
[114] |
SINGH N, RAJWADE J, PAKNIKAR K M. Transcriptome analysis of silver nanoparticles treated Staphylococcus aureus reveals potential targets for biofilm inhibition[J]. Colloids and Surfaces B-Biointerfaces, 2019, 175:487-497.
|
[115] |
LI F, CHAI Z G, SUN M N, et al. Anti-biofilm effect of dental adhesive with cationic monomer[J]. Journal of Dental Research, 2009, 88(4):372-376.
|
[116] |
WANG Y, FAN H, WONG P K, et al. Biodegradation of tetracycline using hybrid material (UCPs-TiO2) coupled with biofilms under visible light[J]. Bioresource Technology, 2021, 323:124638.
|
[117] |
ZHENG X, SU Y L, CHEN Y G, et al. Zinc oxide nanoparticles cause inhibition of microbial denitrification by affecting transcriptional regulation and enzyme activity[J]. Environmental Science&Technology, 2014, 48(23):13800-13807.
|
[118] |
ZHAO Y X, LIU D, HUANG W L, et al. Insights into biofilm carriers for biological wastewater treatment processes:current state-of-the-art, challenges, and opportunities[J]. Bioresource Technology, 2019, 288:121619.
|
[119] |
陈秋丽,张朝升,刘宏英,等.生物活性炭降解低浓度邻苯二甲酸酯的挂膜研究[J].中国给水排水, 2017, 33(1):12-16.
|
[120] |
SUN Y F, QI S Y, ZHENG F P, et al. Organics removal, nitrogen removal and N2O emission in subsurface wastewater infiltration systems amended with/without biochar and sludge[J]. Bioresource Technology, 2018, 249:57-61.
|
[121] |
HAN L N, LIU W J, CHEN M, et al. Comparison of NOM removal and microbial properties in up-flow/down-flow BAC filter[J]. Water Research, 2013, 47(14):4861-4868.
|
[122] |
FAGBOHUNGBE M O, HERBERT B M J, HURST L, et al. The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion[J]. Waste Management, 2017, 61:236-249.
|
[123] |
YAO C, LEI H Y, YU Q, et al. Application of magnetic enhanced bio-effect on nitrification:a comparative study of magnetic and non-magnetic carriers[J]. Water Science and Technology, 2013, 67(6):1280-1287.
|
[124] |
XU S Q, JIANG Q. Surface modification of carbon fiber support by ferrous oxalate for biofilm wastewater treatment system[J]. Journal of Cleaner Production, 2018, 194:416-424.
|
[125] |
CHENG Y, GUO L. Treatment of municipal landfill leachate using magnetic porous ceramsite carrier[J]. Journal of Water Reuse and Desalination, 2014, 4(2):100-108.
|
[126] |
MAO Y J, QUAN X, ZHAO H M, et al. Accelerated startup of moving bed biofilm process with novel electrophilic suspended biofilm carriers[J]. Chemical Engineering Journal, 2017, 315:364-372.
|
[127] |
WANG T, ZHANG D, DAI L L, et al. Magnetite triggering enhanced direct interspecies electron transfer:a scavenger for the blockage of electron transfer in anaerobic digestion of high-solids sewage sludge[J]. Environmental Science&Technology, 2018, 52(12):7160-7169.
|
[128] |
徐恒,汪翠萍,颜锟,等.颗粒型厌氧生物膜改善高氢分压下丙酸降解抑制研究[J].中国环境科学, 2016, 36(5):1435-1441.
|
[129] |
LI Y F, ZHU G B, NG W J, et al. A review on removing pharmaceutical contaminants from wastewater by constructed wetlands:Design, performance and mechanism[J]. Science of the Total Environment, 2014, 468:908-932.
|
[130] |
张云慧,朱伟,董婵.利用生物膜强化表流湿地处理农村生活污水的试验[J].湖泊科学, 2012, 24(6):838-842.
|
[131] |
ZHANG L L, ZHAO J, CUI N X, et al. Enhancing the water purification efficiency of a floating treatment wetland using a biofilm carrier[J]. Environmental Science and Pollution Research, 2016, 23(8):7437-7443.
|
[132] |
MANOHAR S, KIM C K, KAREGOUDAR T B. Enhanced degradation of naphthalene by immobilization of Pseudomonas sp. strain NGK1 in polyurethane foam[J]. Applied Microbiology and Biotechnology, 2001, 55(3):311-316.
|
[133] |
MULLA S I, TALWAR M P, BAGEWADI Z K, et al. Enhanced degradation of 2-nitrotoluene by immobilized cells of Micrococcus sp. strain SMN-1[J]. Chemosphere, 2013, 90(6):1920-1924.
|
[134] |
ZUR J, PINSKI A, MICHALSKA J, et al. A whole-cell immobilization system on bacterial cellulose for the paracetamol-degrading Pseudomonas moorei KB4 strain[J]. International Biodeterioration&Biodegradation, 2020, 149:104919.
|
[135] |
WANG Y Y, FAN Y Z, GU J D. Dimethyl phthalate ester degradation by two planktonic and immobilized bacterial consortia[J]. International Biodeterioration&Biodegradation, 2004, 53(2):93-101.
|
[136] |
GAO Y, ZHANG W, GAO B, et al. Highly efficient removal of nitrogen and phosphorus in an electrolysis integrated horizontal subsurface-flow constructed wetland amended with biochar[J]. Water Research, 2018, 139:301-310.
|
[137] |
XIAO J, HUANG J, HUANG M J, et al. Application of basalt fiber in vertical flow constructed wetland for different pollution loads wastewater:performance, substrate enzyme activity and microorganism community[J]. Bioresource Technology, 2020, 318:124229.
|
[138] |
胡艳,胡曰利,吴晓芙,等.潜流湿地中蛭石填料对氮磷的去除效果研究[J].江苏环境科技, 2007,20(3):5-8.
|
[139] |
朱亮,刘钢,苗伟红,等.膨胀蛭石用于人工湿地去除氮磷的研究[J].河海大学学报(自然科学版), 2008,36(2):147-151.
|
[140] |
ZHANG G Z, MA K, ZHANG Z X, et al. Waste brick as constructed wetland fillers to treat the tail water of sewage treatment plant[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(2):273-281.
|
[141] |
CHYAN J M, SENORO D B, LIN C J, et al. A novel biofilm carrier for pollutant removal in a constructed wetland based on waste rubber tire chips[J]. International Biodeterioration&Biodegradation, 2013, 85:638-645.
|
[142] |
赵晓红,赵亚乾,杨永哲,等.铝污泥人工湿地污水处理系统小试研究[J].中国给水排水, 2015, 31(13):110-115.
|
[143] |
沈东平,方卫,张甜甜.城市污水厂除臭技术的应用综述[J].微生物学通报, 2009, 36(6):887-891.
|
[144] |
张书景,李坚,李依丽,等.恶臭假单胞菌生物滴滤塔净化甲苯废气的研究[J].环境科学, 2007,28(8):1866-1872.
|
[145] |
KIM D J, KIM H. Degradation of toluene vapor in a hydrophobic polyethylene hollow fiber membrane bioreactor with Pseudomonas putida[J]. Process Biochemistry, 2005, 40(6):2015-2020.
|
[146] |
KUMAR A, DEWULF J, VERCRUYSSEN A, et al. Performance of a composite membrane bioreactor treating toluene vapors:inocula selection, reactor performance and behavior under transient conditions[J]. Bioresource Technology, 2009, 100(8):2381-2387.
|
[147] |
叶蔚君,魏在山,郑期展.生物滴滤塔处理低浓度氮氧化物[J].化工进展, 2008,27(8):1265-1268.
|
[148] |
朱润晔,陈建孟,王家德.异养型生物过滤床硝化净化一氧化氮[J].环境工程学报, 2007,1(9):94-99.
|
[149] |
周学霞,姚伟国,杨冰雪,等.生物滴滤塔处理邻二甲苯废气研究[J].浙江大学学报(理学版), 2013, 40(1):71-75.
|
[150] |
WEI Z S, HE Y M, HUANG Z S, et al. Photocatalytic membrane combined with biodegradation for toluene oxidation[J]. Ecotoxicology and Environmental Safety, 2019, 184:109618.
|
[151] |
汪凤诞,初庆东,刘强,等.陶粒填料生物滴滤塔处理二甲苯废气[J].化工环保, 2004,24(2):121-124.
|
[152] |
王恒颖,孙珮石,王洁,等.液相催化-生物法同时脱除烟气中SO2和NO<i>x[J].武汉理工大学学报, 2010, 32(7):98-102.
|
[153] |
李顺义,杨松波,李红丽,等.玉米芯填料生物过滤法净化含氨废气研究[J].高校化学工程学报, 2011, 25(2):351-355.
|
[154] |
席劲瑛,胡洪营,罗彬,等.不同填料生物滤塔净化城市污水厂恶臭气体研究[J].中国给水排水, 2010, 26(3):1-3.
|
[155] |
叶芬霞,朱瑞芬,叶央芳.复合微生物吸附除臭剂的制备及其除臭应用[J].农业工程学报, 2008,24(8):254-257.
|
[156] |
WU Y C, CAI P, JING X X, et al. Soil biofilm formation enhances microbial community diversity and metabolic activity[J]. Environment International, 2019, 132:105116.
|
[157] |
HE S, DING L L, WANG X, et al. Biochar carrier application for nitrogen removal of domestic WWTPs in winter:challenges and opportunities[J]. Applied Microbiology and Biotechnology, 2018, 102(22):9411-9418.
|
[158] |
郑丹阳,孙寓姣,赵晓辉,等.磁性纳米颗粒在环境生物技术领域的应用[J].环境科学与技术, 2017, 40(2):70-75.
|
[159] |
KATO S, HASHIMOTO K, WATANABE K. Microbial interspecies electron transfer via electric currents through conductive minerals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(25):10042-10046.
|
[160] |
XU S Z, XING Y H, LIU S, et al. Co-effect of minerals and Cd (Ⅱ) promoted the formation of bacterial biofilm and consequently enhanced the sorption of Cd (Ⅱ)[J]. Environmental Pollution, 2020, 258:113774.
|
[161] |
KULCZYCKI E, FOWLE D A, FORTIN D, et al. Sorption of cadmium and lead by bacteria-ferrihydrite composites[J]. Geomicrobiology Journal, 2005, 22(6):299-310.
|
[162] |
韩菲,完颜华,迟毅超,等.活性炭纤维载体生物膜法处理洗车废水研究[J].环境工程学报, 2010, 4(4):751-755.
|
[163] |
YAN M Q, WANG D S, MA X N, et al. THMs precursor removal by an integrated process of ozonation and biological granular activated carbon for typical Northern China water[J]. Separation and Purification Technology, 2010, 72(3):263-268.
|
[164] |
郭建宁,陈磊,张锡辉,等.臭氧/陶瓷膜对生物活性炭工艺性能和微生物群落结构影响[J].中国环境科学, 2014, 34(3):697-704.
|
[165] |
范晓丹,李皓璇,姬海燕,等.生物活性炭法深度处理印染废水及其生物毒性的表征[J].环境工程学报, 2015, 9(1):188-194.
|
[166] |
车春波,苏荣军,聂千.采用生物活性炭法对含油污水进行深度处理[J].炼油与化工, 2009, 20(1):52-53
,70.
|
[167] |
程雪敏,陈超,樊占国.抗生素制药废水的混凝和生化处理研究[J].环境保护科学, 2010, 36(2):34-37.
|
[168] |
ZHONG H Y, WANG H, TIAN Y, et al. Treatment of polluted surface water with nylon silk carrier-aerated biofilm reactor (CABR)[J]. Bioresource Technology, 2019, 289:121617.
|