Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LI Qiushi, GUO Xiang, LIU Bin, LIN Fawei, ZHAO Yingxin. STUDY ON METHANE PRODUCTION BY THERMOPHILIC ANAEROBIC DIGESTION OF MUNICIPAL SLUDGE AND CORN STRAW[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 139-145. doi: DOI:10.13205/j.hjgc.202207020
Citation: GUO Xiang, LI Ruiyi, ZHANG Rui, LIU Bin, CHEN Guanyi, HOU Li'an. RESEARCH ADVANCES IN BIOMASS GASIFICATION BASED ON BIBLIOMETRIC ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 232-239,131. doi: DOI:10.13205/j.hjgc.202207032

RESEARCH ADVANCES IN BIOMASS GASIFICATION BASED ON BIBLIOMETRIC ANALYSIS

doi: DOI:10.13205/j.hjgc.202207032
  • Received Date: 2021-08-17
    Available Online: 2022-09-02
  • Biomass gasification is an efficient way to realize the distributed development and energy conversion of biomass.It is versatile and flexible,contributes to the construction of clean energy systems,and has been widely investigated and applied worldwide.The bibliometric analysis combined with S-curve technique and visualization tools were applied to quantitatively analyze 12034 articles related to biomass gasification research based on the Web of Science Core Collection in 2001-2020.The results indicated that the article number on biomass gasification increased from 58 in 2001 to 1517 in 2020,with a steady annual increment rate.The S-curve from articles indicated that biomass gasification technology was attached with great potential for innovation and development in the next 15 years.China had the highest number of publications (3201,26.60% of global output) and occupied a core position in the international cooperation network,whereas the papers published in the European countries and the United States were of higher impact.The co-occurrence and evolution path of keywords indicated that value-added utilization of byproducts from biomass gasification,development of new gasification processes (coupling process,chemical looping gasification),contribution to carbon neutrality,and evaluation on energy,exergy,economic,environmental benefits have become the new focus of biomass gasification research.
  • [1]
    HE Q, GUO Q H, UMEKI K, et al. Soot formation during biomass gasification:a critical review[J]. Renewable and Sustainable Energy Reviews, 2021, 139:110710.
    [2]
    WIJAYANTA A T, SAIFUL ALAM M, NAKASO K, et al. Optimized combustion of biomass volatiles by varying O2 and CO2 Levels:a numerical simulation using a highly detailed soot formation reaction mechanism[J]. Bioresource Technology, 2012, 110:645-651.
    [3]
    SIKARWAR V S, ZHAO M, CLOUGH P, et al. An overview of advances in biomass gasification[J]. Energy&Environmental Science, 2016,(9):2939-2977.
    [4]
    MOLINO A, LAROCCA V, CHIANESE S, et al. Biofuels production by biomass gasification:a review[J]. Energies, 2018, 11(4):811.
    [5]
    HOSOYA T, KAWAMOTO H, SAKA S. Pyrolysis gasification reactivities of primary tar and char fractions from cellulose and lignin as studied with a closed ampoule reactor[J]. Journal of Analytical and Applied Pyrolysis, 2008, 83(1):71-77.
    [6]
    LI J, JIAO L G, TAO J Y, et al. Can microwave treat biomass tar?a comprehensive study based on experimental and net energy analysis[J]. Applied Energy, 2020, 272:115194.
    [7]
    SAFARIAN S, UNNPÓRSSON R, RICHTER C. A review of biomass gasification modelling[J]. Renewable and Sustainable Energy Reviews, 2019, 110:378-391.
    [8]
    PARAJULI P B, DENG Y, KIM H, et al. Cost analysis model for syngas production cost evaluation using the graphical user interface[J]. Energy and Power, 2014, 2(4):35-40.
    [9]
    DELL ANTONIA D, CIVIDINO S R S, MALEV O, et al. A techno-economic feasibility assessment on small-scale forest biomass gasification at a regional level[J]. Applied Mathematical Sciences, 2014, 8:6565-6576.
    [10]
    WALLIN J A. Bibliometric methods:pitfalls and possibilities[J]. Basic&Clinical Pharmacology&Toxicology, 2005,(97):261-275.
    [11]
    MAO G Z, HU H Q, LIU X, et al. A Bibliometric analysis of industrial wastewater treatments from 1998 to 2019[J]. Environmental Pollution, 2021, 275:115785.
    [12]
    de BATTISTI F, SALINI S. robust analysis of bibliometric data[J]. Statistical Methods&Applications, 2013, 22(2):269-283.
    [13]
    HIRSCH J E. An index to quantify an individual's scientific research output that takes into account the effect of multiple coauthorship[J]. Scientometrics, 2010, 85(3):741-754.
    [14]
    ZOU X, YUE W L, VU H L. Visualization and analysis of mapping knowledge domain of road safety studies[J]. Accident Analysis&Prevention, 2018, 118:131-145.
    [15]
    郭荣欣,杨依雯,郑旭升,等.基于Web of Science数据库的厌氧消化研究文献计量分析[J].中国沼气, 2021, 39(3):50-58.
    [16]
    van ECK N J, WALTMAN L. Software Survey:VOSviewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010, 84(2):523-538.
    [17]
    王建楠,胡志超,彭宝良,等.我国生物质气化技术概况与发展[J].农机化研究, 2010, 32(1):198-201

    , 205.
    [18]
    王鹏.日本生物质应用实例和综合战略[J].洁净煤技术, 2006,(3):21-24.
    [19]
    MANEERUNG T, LIEW J, DAI Y J, et al. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption:kinetics, isotherms and thermodynamic studies[J]. Bioresource Technology, 2016, 200:350-359.
    [20]
    SHEN Y F, ZHAO P T, SHAO Q F, et al. In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification[J]. Applied Catalysis B:Environmental, 2014, 152/153:140-151.
    [21]
    AL-RAHBI A S, WILLIAMS P T. Hydrogen-rich syngas production and tar removal from biomass gasification using sacrificial tyre pyrolysis char[J]. Applied Energy, 2017, 190:501-509.
    [22]
    SHAYAN E, ZARE V, MIRZAEE I. Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents[J]. Energy Conversion and Management, 2018, 159:30-41.
    [23]
    ALNOUSS A, MCKAY G, AL-ANSARI T. Production of syngas via gasification using optimum blends of biomass[J]. Journal of Cleaner Production, 2020, 242:118499.
    [24]
    WANG J J, YANG K, XU Z L, et al. Energy and exergy analyses of an integrated CCHP System with biomass air gasification[J]. Applied Energy, 2015, 142:317-327.
    [25]
    ELLIS N, MASNADI M S, ROBERTS D G, et al. Mineral matter interactions during co-pyrolysis of coal and biomass and their impact on intrinsic char co-gasification reactivity[J]. Chemical Engineering Journal, 2015, 279:402-408.
    [26]
    MASNADI M S, GRACE J R, BI X T, et al. From fossil fuels towards renewables:inhibitory and catalytic effects on carbon thermochemical conversion during co-gasification of biomass with fossil fuels[J]. Applied Energy, 2015, 140:196-209.
    [27]
    ABDOULMOUMINE N, ADHIKARI S, KULKARNI A, et al. A review on biomass gasification syngas cleanup[J]. Applied Energy, 2015, 155:294-307.
    [28]
    AHRENFELDT J, THOMSEN T P, HENRIKSEN U, et al. Biomass gasification cogeneration-a review of state of the art technology and near future perspectives[J]. Applied Thermal Engineering, 2013, 50(2):140714-140717.
    [29]
    ANEX R P, ADEN A, KAZI F K, et al. Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways[J]. Fuel, 2010, 89:S29-35.
    [30]
    ANTONIOU N, MONLAU F, SAMBUSITI C, et al. Contribution to circular economy options of mixed agricultural wastes management:coupling anaerobic digestion with gasification for enhanced energy and material recovery[J]. Journal of Cleaner Production, 2019, 209:505-514.
    [31]
    GUO X, ZHANG Y B, GUO Q Q, et al. Evaluation on energetic and economic benefits of the coupling anaerobic digestion and gasification from agricultural wastes[J]. Renewable Energy, 2021, 176:494-503.
    [32]
    CHEN G Y, GUO X, CHENG Z J, et al. Air gasification of biogas-derived digestate in a downdraft fixed bed gasifier[J]. Waste Management, 2017, 69:162-169.
    [33]
    CHEN G Y, GUO X, LIU F, et al. Gasification of lignocellulosic biomass pretreated by anaerobic digestion (AD) process:an experimental study[J]. Fuel, 2019, 247:324-333.
    [34]
    FUNKE A, MUMME J, KOON M, et al. Cascaded production of biogas and hydrochar from wheat straw:energetic potential and recovery of carbon and plant nutrients[J]. Biomass and Bioenergy, 2013, 58:229-237.
    [35]
    YANG Z Y, LIU Y, ZHANG J, et al. Improvement of biofuel recovery from food waste by integration of anaerobic digestion, digestate pyrolysis and syngas biomethanation under mesophilic and thermophilic conditions[J]. Journal of Cleaner Production, 2020, 256:120594.
    [36]
    SARAFRAZ M M, CHRISTO F C. Thermodynamic assessment and techno-economic analysis of a liquid indium-based chemical looping system for biomass gasification[J]. Energy Conversion and Management, 2020, 225:113428.
    [37]
    吴志强,张博,杨伯伦.生物质化学链转化技术研究进展[J].化工学报, 2019, 70(8):2835-2853.
  • Relative Articles

    [1]ZHANG Jinfeng, XU Chengbin, GUO Fei. A BIBLIOMETRIC STUDY OF ANTIMONY ECOLOGICAL ENVIRONMENTAL RISK AND WATER QUALITY BENCHMARKING TREND[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 207-214. doi: 10.13205/j.hjgc.202403026
    [2]CHEN Da, LIU Chunting, WU Mengying, YANG Xiaojun, GUO Xiang. RESEARCH ADVANCES AND HOTSPOT EVOLUTION OF SUSTAINABLE AVIATION FUEL: A VISUAL ANALYSIS BASED ON BIBLIOMETRICS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 132-139. doi: 10.13205/j.hjgc.202410016
    [3]LIAO Chengfeng, LIU Yuchen, TANG Yuting, TANG Jiehong, MA Xiaoqian. LIFE CYCLE ASSESSMENT AND TECHNO-ECONOMIC ANALYSIS OF PRODUCING AMMONIA BY ALGAL BIOMASS GASIFICATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 187-194. doi: 10.13205/j.hjgc.202305025
    [4]LIU Haizhu, BAI Junhong, WANG Yaqi, ZHANG Ling, LIU Zhe. RESEARCH PROGRESS AND HOTSPOT ANALYSIS OF SEDIMENT MICROPLASTICS BASED ON CITESPACE LITERATURE METROLOGY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 42-50. doi: 10.13205/j.hjgc.202301006
    [5]LI Shefeng, DU Shaoxia, BAO Shenxu, YAN Shuiping, LIU Ziyang. BIBLIOMETRIC ANALYSIS AND DEVELOPMENT TREND DISCUSSION OF CONTAMINATED SOIL REMEDIATION TECHNOLOGY IN INTERNATIONAL RESEARCH[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 329-336,342. doi: 10.13205/j.hjgc.202312041
    [6]CHEN Xueming, LI Fuyi. BIBLIOMETRIC ANALYSIS OF N2O RESEARCH IN WASTEWATER SYSTEMS IN 2000-2020[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 92-96,279. doi: 10.13205/j.hjgc.202206012
    [7]WU Weixia, HUANG Caihong, TANG Zhurui, LI Yanhong, ZHU Lin, MA Caiyun. RESEARCH ADVANCE ON COMPOST ODOR IN 2001-2020 BASED ON BIBLIOMETRICS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 211-221. doi: 10.13205/j.hjgc.202211029
    [8]ZHANG Zekun, WAN Dan, XU Hao, YAN Wei, JIN Xiaoliang. RESEARCH STATUS AND DEVELOPING TREND OF ELECTRO-CATALYTIC REDUCTION OF CO2 BASED ON BIBLIOMETRIC[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 222-230. doi: 10.13205/j.hjgc.202211030
    [9]ZHANG Ze, ZHAO Hong-jun, MENG Jie, HONG Chen, LI Yi-fei. RESEARCH PROGRESS OF BIOMASS PYROLYSIS AND BIO OIL UPGRADING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 161-171. doi: 10.13205/j.hjgc.202103023
    [10]HE Yuan-pu, FAN Hai-tao, LIU Guo-hua, QI Lu, XU Xiang-long, SHAO Yu-ting, WANG Hong-chen. STATUS AND TREND OF AERATION CONTROL STRATEGY DURING BIOLOGICAL WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 34-41,121. doi: 10.13205/j.hjgc.202106006
    [11]WANG Yong-lin, ZHANG Chuan-he, ZHAO Yu-peng, WU Liang, GUO Bing, YANG Ting, WANG Xin-xin. TREND ANALYSIS OF SOIL BIOREMEDIATION BASED ON WEB OF SCIENCE DATABASE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 199-204. doi: 10.13205/j.hjgc.202109028
    [12]SONG Da-gang, LI Hui-bin, WANG Jiu-chen, MEI Zi-li, RAN Yi. BIBLIOMETRIC ANALYSIS OF RESEARCH TRENDS ON RURAL WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 16-24,30. doi: 10.13205/j.hjgc.202105003
    [13]CHENG Lu-yao, LI Juan, WANG Liang-jie, DU Ji-jun, ZENG Ping, ZHAO Xiu-mei, WANG Chen-hao. DEVELOPMENT TREND ANALYSIS OF BIOAUGMENTATION TECHNOLOGY FOR WASTEWATER TREATMENT BASED ON BIBLIOMETRIC[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 40-47. doi: 10.13205/j.hjgc.202103006
    [17]Shen Lei Zhuang Huisheng, . STUDY ON COMPREHENSIVE RISK ASSESSMENT OF BIOMASS GASIFICATION POWER GENERATION INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 137-141. doi: 10.13205/j.hjgc.201504029
    [18]Li Shanshan Zhang Wenyu Sun Changhong Zhang Nan Xue Niantao, . STATUS AND TRENDS ANALYSIS ON REMEDIATION OF POLLUTED SOIL IN CHINA BASED ON LITERATURE MOTROLOGY[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 160-165. doi: 10.13205/j.hjgc.201505035
  • Cited by

    Periodical cited type(4)

    1. 李雷明,葛飞,王建萍,陈文娟,王毓菁. 基于文献计量的盐湖研究进展及前沿态势分析. 盐湖研究. 2024(02): 80-89 .
    2. 辛泊达,吕连宏,王斯一,董京京,张楠,杨超. 基于文献计量分析的生物质能源领域研究进展. 中国环境科学. 2024(04): 1875-1884 .
    3. 陈达,刘春婷,吴梦萦,杨晓军,郭祥. 可持续航空燃料研究趋势及热点演进:基于文献计量的可视化分析. 环境工程. 2024(10): 132-139 . 本站查看
    4. 邓安楠,陶雪,熊小燕,邓艳霞,邹其玲. 基于文献计量的微塑料研究态势分析. 广东化工. 2023(22): 67-69 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.5 %FULLTEXT: 13.5 %META: 83.8 %META: 83.8 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.2 %其他: 13.2 %其他: 1.3 %其他: 1.3 %上海: 0.7 %上海: 0.7 %东莞: 2.3 %东莞: 2.3 %临汾: 0.3 %临汾: 0.3 %伊斯坦布尔: 1.0 %伊斯坦布尔: 1.0 %保定: 0.3 %保定: 0.3 %北京: 9.6 %北京: 9.6 %南京: 0.3 %南京: 0.3 %南通: 0.3 %南通: 0.3 %厦门: 1.0 %厦门: 1.0 %合肥: 0.3 %合肥: 0.3 %呼和浩特: 0.7 %呼和浩特: 0.7 %哈尔滨: 0.3 %哈尔滨: 0.3 %嘉兴: 0.3 %嘉兴: 0.3 %天津: 3.6 %天津: 3.6 %太原: 0.7 %太原: 0.7 %常州: 2.0 %常州: 2.0 %常德: 0.7 %常德: 0.7 %广州: 2.3 %广州: 2.3 %弗吉尼亚州: 0.3 %弗吉尼亚州: 0.3 %张家口: 3.0 %张家口: 3.0 %成都: 1.3 %成都: 1.3 %扬州: 1.0 %扬州: 1.0 %无锡: 0.3 %无锡: 0.3 %昆明: 0.7 %昆明: 0.7 %晋城: 0.7 %晋城: 0.7 %朝阳: 0.3 %朝阳: 0.3 %杭州: 1.0 %杭州: 1.0 %武威: 0.3 %武威: 0.3 %武汉: 3.0 %武汉: 3.0 %洛阳: 0.3 %洛阳: 0.3 %济源: 0.7 %济源: 0.7 %深圳: 0.3 %深圳: 0.3 %温州: 0.7 %温州: 0.7 %湖州: 1.0 %湖州: 1.0 %漯河: 1.7 %漯河: 1.7 %焦作: 1.0 %焦作: 1.0 %石家庄: 0.7 %石家庄: 0.7 %福州: 0.7 %福州: 0.7 %芒廷维尤: 18.8 %芒廷维尤: 18.8 %芝加哥: 3.0 %芝加哥: 3.0 %荆州: 0.3 %荆州: 0.3 %衢州: 0.7 %衢州: 0.7 %西宁: 6.3 %西宁: 6.3 %贵阳: 0.7 %贵阳: 0.7 %运城: 3.0 %运城: 3.0 %遵义: 0.3 %遵义: 0.3 %郑州: 2.6 %郑州: 2.6 %重庆: 0.7 %重庆: 0.7 %铁岭: 0.3 %铁岭: 0.3 %长沙: 1.0 %长沙: 1.0 %长治: 0.3 %长治: 0.3 %阜新: 0.3 %阜新: 0.3 %随州: 0.3 %随州: 0.3 %青岛: 1.0 %青岛: 1.0 %马鞍山: 0.3 %马鞍山: 0.3 %其他其他上海东莞临汾伊斯坦布尔保定北京南京南通厦门合肥呼和浩特哈尔滨嘉兴天津太原常州常德广州弗吉尼亚州张家口成都扬州无锡昆明晋城朝阳杭州武威武汉洛阳济源深圳温州湖州漯河焦作石家庄福州芒廷维尤芝加哥荆州衢州西宁贵阳运城遵义郑州重庆铁岭长沙长治阜新随州青岛马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (253) PDF downloads(8) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return