中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀土材料在挥发性有机废气降解中的应用及发展趋势

许子飏 莫胜鹏 付名利 任泉明 张明远 樊洁 熊菊霞 叶代启

许子飏, 莫胜鹏, 付名利, 任泉明, 张明远, 樊洁, 熊菊霞, 叶代启. 稀土材料在挥发性有机废气降解中的应用及发展趋势[J]. 环境工程, 2020, 38(1): 1-12,36. doi: 10.13205/j.hjgc.202001001
引用本文: 许子飏, 莫胜鹏, 付名利, 任泉明, 张明远, 樊洁, 熊菊霞, 叶代启. 稀土材料在挥发性有机废气降解中的应用及发展趋势[J]. 环境工程, 2020, 38(1): 1-12,36. doi: 10.13205/j.hjgc.202001001
XU Zi-yang, MO Sheng-peng, FU Ming-li, REN Quan-ming, ZHANG Ming-yuan, FAN Jie, XIONG Ju-xia, YE Dai-qi. APPLICATION AND DEVELOPMENT TREND OF RARE EARTH MATERIALS IN DEGRADATION OF VOLATILE ORGANIC WASTE GAS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 1-12,36. doi: 10.13205/j.hjgc.202001001
Citation: XU Zi-yang, MO Sheng-peng, FU Ming-li, REN Quan-ming, ZHANG Ming-yuan, FAN Jie, XIONG Ju-xia, YE Dai-qi. APPLICATION AND DEVELOPMENT TREND OF RARE EARTH MATERIALS IN DEGRADATION OF VOLATILE ORGANIC WASTE GAS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 1-12,36. doi: 10.13205/j.hjgc.202001001

稀土材料在挥发性有机废气降解中的应用及发展趋势

doi: 10.13205/j.hjgc.202001001
基金项目: 

国家重点研发计划项目(2017YFC0212805);国家自然科学基金项目(51878292)。

详细信息
    作者简介:

    许子飏(1996-),男,在读硕士研究生,主要研究方向为大气污染控制工程。1250958325@qq.com

    通讯作者:

    叶代启(1965-),男,博士,教授,主要研究方向为大气污染控制工程。cedqye@scut.edu.cn

APPLICATION AND DEVELOPMENT TREND OF RARE EARTH MATERIALS IN DEGRADATION OF VOLATILE ORGANIC WASTE GAS

  • 摘要: 稀土材料由于富含表面羟基、表面晶格缺陷和具有高温稳定性,结合其强挥发性有机物(VOCs)亲和性以及优异储氧和释放能力等优势,在大气污染控制领域的应用十分广泛。近年来的研究发现,部分稀土基材料在VOCs处理上的效果优于贵金属催化剂,在实际工程中也显示出广泛的应用前景。在文献及工程调研的基础上,综述了稀土基材料在国内外催化领域、吸附领域以及实际工程应用中的现状,分析了稀土材料的优势以及目前面临的难题。从吸附、催化等角度分析了稀土材料在国内外的发展趋势,同时结合我国当前国情指出发展中的关键问题及解决方案,期望能为稀土材料在VOCs治理领域的更好发展提供参考。
  • [1] KAMAL M S, RAZZAK S A, HOSSAIN M M. Catalytic oxidation of volatile organic compounds (VOCs)-A review [J]. Atmospheric Environment, 2016, 140: 117-134.
    [2] MELLOUKI A, WALLINGTON T J, CHEN J. Atmospheric Chemistry of Oxygenated Volatile Organic Compounds: impacts on Air Quality and Climate [J]. Chemical Reviews, 2015, 115(10): 3984-4014.
    [3] 邵敏, 董东. 我国大气挥发性有机物污染与控制[J]. 环境保护, 2013, 41(5): 25-28.
    [4] 魏巍. 中国人为源挥发性有机化合物的排放现状及未来趋势[D]:北京:清华大学, 2009.
    [5] BOLTIC Z, RUZIC N, JOVANOVIC M, et al. Cleaner production aspects of tablet coating process in pharmaceutical industry: problem of VOCs emission [J]. Journal of Cleaner Production, 2013, 44: 123-132.
    [6] 章旭明. 低温等离子体净化处理挥发性有机气体技术研究[D]. 杭州:浙江大学, 2011.
    [7] 孙健, 戴维杰, 肖伟豪, 等. 挥发性有机物吸附材料研究进展[J]. 现代化工, 2017, 37(7): 58-62.
    [8] RUIZ-FERNÁNDEZ M, ALEXANDRE-FRANCO M, FERNÁNDEZ-GONZÁLEZ C, et al. Development of activated carbon from vine shoots by physical and chemical activation methods. Some insight into activation mechanisms [J]. Adsorption, 2011, 17(3): 621-629.
    [9] 牛茜, 李兵, 徐校良, 等. 催化燃烧法处理挥发性有机化合物研究进展[J]. 现代化工, 2013, 33(11): 19-23.
    [10] PENG R, LI S, SUN X, et al. Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts [J]. Applied Catalysis B: Environmental, 2018, 220: 462-470.
    [11] JIANG Y, GAO J, ZHANG Q, et al. Enhanced oxygen vacancies to improve ethyl acetate oxidation over MnOx-CeO2 catalyst derived from MOF template [J]. Chemical Engineering Journal, 2019, 371: 78-87.
    [12] ZHANG Y, ZHANG H, XU Y, et al. Europium doped nanocrystalline titanium dioxide: Preparation, phase transformation and photocatalytic properties [J]. Journal of Materials Chemistry, 2003, 13(9): 2261-2265.
    [13] RAO G R, FORNASIERO P, MONTE R D, et al. Reduction of NO over partially reduced metal-loaded CeO2-ZrO2 solid solutions [J]. Journal of Catalysis, 1996, 162(1): 1-9.
    [14] HU F, PENG Y, CHEN J, et al. Low content of CoOx supported on nanocrystalline CeO2 for toluene combustion: the importance of interfaces between active sites and supports [J]. Applied Catalysis B: Environmental, 2019, 240: 329-336.
    [15] OZAWA M, YUZURIHA H, HANEDA M. Total oxidation of toluene and oxygen storage capacity of zirconia-sol modified ceria zirconia [J]. Catalysis Communications, 2013, 30: 32-35.
    [16] LÓPEZ J M, GILBANK A L, GARCÍA T, et al. The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation [J]. Applied Catalysis B: Environmental, 2015, 174-175: 403-412.
    [17] ZHANG C, GUO Y, GUO Y, et al. LaMnO3 perovskite oxides prepared by different methods for catalytic oxidation of toluene [J]. Applied Catalysis B: Environmental, 2014, 148/149: 490-498.
    [18] GIRAUDON J M, ELHACHIMI A, WYRWALSKI F, et al. Studies of the activation process over Pd perovskite-type oxides used for catalytic oxidation of toluene [J]. Applied Catalysis B, Environmental, 2007, 75(3): 157-166.
    [19] SHAH P M, DAY A N, DAVIES T E, et al. Mechanochemical preparation of ceria-zirconia catalysts for the total oxidation of propane and naphthalene Volatile Organic Compounds [J]. Applied Catalysis B: Environmental, 2019, 253: 331-340.
    [20] WANG Z, LI S, XIE S, et al. Supported ultralow loading Pt catalysts with high H2O-, CO2-, and SO2-resistance for acetone removal [J]. Applied Catalysis A, General, 2019, 579: 106-115.
    [21] FUKU K, GOTO M, SAKANO T, et al. Efficient degradation of CO and acetaldehyde using nano-sized Pt catalysts supported on CeO2 and CeO2/ZSM-5 composite [J]. Catalysis Today, 2013, 201(1): 57-61.
    [22] FIORENZA R, BELLARDITA M, PALMISANO L, et al. A comparison between photocatalytic and catalytic oxidation of 2-Propanol over Au/TiO2-CeO2 catalysts [J]. Journal of Molecular Catalysis A, Chemical, 2016, 415: 56-64.
    [23] KAMINSKI P, ZIOLEK M. Surface and catalytic properties of Ce-, Zr-, Au-, Cu-modified SBA-15[J]. Journal of Catalysis, 2014, 312: 249-262.
    [24] 魏延志, 陈彦模, 张瑜,等. 稀土在高聚物改性中的应用[J]. 高分子材料科学与工程, 2005, (1): 52-56.
    [25] 张本镔, 刘运权, 叶跃元. 活性炭制备及其活化机理研究进展[J]. 现代化工, 2014, 34(3): 34-39.
    [26] KRAUS M, TROMMLER U, HOLZER F, et al. Competing adsorption of toluene and water on various zeolites [J]. Chemical Engineering Journal, 2018, 351: 356-363.
    [27] SAINI K V, PIRES J O. Development of metal organic fromwork-199 immobilized zeolite foam for adsorption of common indoor VOCs [J]. Journal of Environmental Sciences, 2017, 55(5): 321-330.
    [28] ANFRUNS A, MARTIN M J, MONTES-MORÁN M A. Removal of odourous VOCs using sludge-based adsorbents [J]. Chemical Engineering Journal, 2011, 166(3): 1022-1031.
    [29] 有机废气治理行业2015年发展综述[J]. 中国环保产业, 2016,(11): 5-13.
    [30] ZHANG Z, HUANG J, XIA H, et al. Chlorinated volatile organic compound oxidation over SO42-/Fe2O3 catalysts [J]. Journal of Catalysis, 2018, 360: 277-289.
    [31] FENG Z, REN Q, PENG R, et al. Effect of CeO2 morphologies on toluene catalytic combustion [J]. Catalysis Today, 2019, 332: 177-182.
    [32] YANG H, DENG J, LIU Y, et al. Preparation and catalytic performance of Ag, Au, Pd or Pt nanoparticles supported on 3DOM CeO2-Al2O3 for toluene oxidation [J]. Journal of Molecular Catalysis A, Chemical, 2016, 414: 9-18.
    [33] LIN X, LI S, HE H, et al. Evolution of oxygen vacancies in MnOx-CeO2 mixed oxides for soot oxidation [J]. Applied Catalysis B: Environmental, 2018, 223: 91-102.
    [34] HE H, LIN X, LI S, et al. The key surface species and oxygen vacancies in MnOx(0.4)—CeO2 toward repeated soot oxidation [J]. Applied Catalysis B: Environmental, 2018, 223: 134-142.
    [35] DAI H, JING S, WANG H, et al. VOC characteristics and inhalation health risks in newly renovated residences in Shanghai, China [J]. Science of the Total Environment, 2017, 577: 73-83.
    [36] MA X, LI L, LI H, et al. Porous carbon materials based on biomass for acetone adsorption: effect of surface chemistry and porous structure [J]. Applied Surface Science, 2018, 459: 657-664.
    [37] QIN Y, WANG H, WANG Y, et al. Effect of Morphology and Pore Structure of SBA-15 on Toluene Dynamic Adsorption/Desorption Performance [J]. Procedia Environmental Sciences, 2013, 18:366-371.
    [38] 王丽萍, 陈建平. 大气污染控制工程[M]. 北京:中国矿业大学出版社,2012.
  • [1] 袁健, 钱雅洁, 薛罡, 张权, 李前, 刘自豪, 李贤英.  活性污泥水热碳化法制备磁性炭及对水体Cd2+及Pb2+的去除, 环境工程. doi: 10.13205/j.hjgc.202002007
    [2] 刘琳, 辛宇, 姚彤, 韦莉莉, 刘超翔.  畜禽养殖污水所含典型抗生素在人工湿地中的去除途径探讨, 环境工程. doi: 10.13205/j.hjgc.202006016
    [3] 史慧敏, 汪群慧, 倪金, 高明, 吴川福.  三维电极法降解阿莫西林模拟废水的工艺研究, 环境工程. doi: 10.13205/j.hjgc.202005006
    [4] 张凯, 杨仕超, 罗敏, 吴延恒, 于素英.  纳米片层状ZSM-5分子筛制备及其对室内环境VOCs吸附性能, 环境工程. doi: 10.13205/j.hjgc.202001009
    [5] 付娆, 张文龙, 冯江涛, 延卫.  锐钛矿型二氧化钛的低温合成及其吸附除氟性能的研究, 环境工程. doi: 10.13205/j.hjgc.202002009
    [6] 刘学, 李小燕, 陈玉洁, 桑伟璇, 陈蓉, 肖慧.  某铀尾矿库区周围稻田土壤不同组分对U(Ⅵ)的吸附性能分析, 环境工程. doi: 10.13205/j.hjgc.202006040
    [7] 李培培, 周雨舟, 向宇佳, 周耀渝, 朱红梅, 荣湘民.  生物炭负载铁酸锰对水溶液中对氨基苯胂酸的吸附, 环境工程. doi: 10.13205/j.hjgc.202001011
    [8] 叶倩玲, 金歆, 陈箫, 史琳, 杨琦, 刘兆香, 王京, 张晓岚, 王树堂.  La2O3纳米颗粒对水溶液中As (Ⅲ)的吸附, 环境工程. doi: 10.13205/j.hjgc.202001016
    [9] 李静, 鲍东杰, 王向宁, 刘占孟.  磁性纳米复合吸附剂PFM对铜的吸附性能与吸附机理研究, 环境工程. doi: 10.13205/j.hjgc.202005015
    [10] 许倩倩, 孙德帅, 亓雁飞, 段良燕, 李润浩, 朱洪堂.  铁有机骨架材料对偶氮型阴离子染料的吸附, 环境工程. doi: 10.13205/j.hjgc.201903018
    [11] 唐娜, 王英乔, 贾中原, 王志刚, 程鹏高, 相政乐, 吕喜军, 张蕾.  臭氧氧化处理油气管道清洗废水工艺优化研究, 环境工程. doi: 10.13205/j.hjgc.201510006
    [12] 许妍哲, 方战强.  生物炭修复土壤重金属的研究进展, 环境工程. doi: 10.13205/j.hjgc.201502035
    [13] 聂发辉, 李娟花, 刘占孟.  鄱阳湖湿地土壤中胡敏素对氨氮的吸附性能研究, 环境工程. doi: 10.13205/j.hjgc.201510036
    [14] 张俊香, 黄学敏, 曹利, 马广大.  负载Cu改性活性炭吸附VOCs性能的研究, 环境工程. doi: 10.13205/j.hjgc.201501022
    [15] 陆燕勤, 朱丽, 何昭菊, 张华, 李小霞.  沸石负载氧化铁吸附剂吸附除磷研究, 环境工程. doi: 10.13205/j.hjgc.201504011
    [16] 朱东波, 李玲密, 李新红, 刘玉鹏, 孙国刚, 周欣.  疏水性SiO_2气凝胶吸附水溶液中有机物的研究进展, 环境工程. doi: 10.13205/j.hjgc.201503006
    [17] 王琳玲, 周海燕, 蒋伟, 杨旭东, 范飞飞, 陈静, 陆晓华.  活性炭纤维对丁酮废气的吸附和再生性能研究, 环境工程. doi: 10.13205/j.hjgc.201412011
    [18] 李国平, 胡志军, 李建军, 杨振亚, 何忠, 王志良.  低温等离子体-催化协同净化有机废气研究进展, 环境工程. doi: 10.13205/j.hjgc.201303019
    [19] 杜长明, 张创荣, 曾海燕, 王静, 陆胜勇, 严建华, 熊亚, 米琼, 刘惠.  活性炭吸附和脱附-等离子体氧化净化有机废气, 环境工程. doi: 10.13205/j.hjgc.201005020
    [20] 何建敏, 林海, 董颖博.  介孔复合吸附材料对微污染水源水中有机污染物的吸附试验, 环境工程. doi: 10.13205/j.hjgc.200901009
  • 加载中
计量
  • 文章访问数:  31
  • HTML全文浏览量:  2
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-01

目录

    /

    返回文章
    返回