中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湿法解毒还原工艺对铬渣中Cr(Ⅵ)的治理特性

陈窈君 李来顺 吕正勇 闵玉涛

陈窈君, 李来顺, 吕正勇, 闵玉涛. 湿法解毒还原工艺对铬渣中Cr(Ⅵ)的治理特性[J]. 环境工程, 2020, 38(6): 67-74. doi: 10.13205/j.hjgc.202006011
引用本文: 陈窈君, 李来顺, 吕正勇, 闵玉涛. 湿法解毒还原工艺对铬渣中Cr(Ⅵ)的治理特性[J]. 环境工程, 2020, 38(6): 67-74. doi: 10.13205/j.hjgc.202006011
CHEN Yao-jun, LI Lai-shun, LV Zheng-yong, MIN Yu-tao. RESEARCH ON WET DETOXIFICATION TECHNOLOGY OF CHROMITE ORE PROCESSING RESIDUE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 67-74. doi: 10.13205/j.hjgc.202006011
Citation: CHEN Yao-jun, LI Lai-shun, LV Zheng-yong, MIN Yu-tao. RESEARCH ON WET DETOXIFICATION TECHNOLOGY OF CHROMITE ORE PROCESSING RESIDUE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 67-74. doi: 10.13205/j.hjgc.202006011

湿法解毒还原工艺对铬渣中Cr(Ⅵ)的治理特性

doi: 10.13205/j.hjgc.202006011
基金项目: 

国家重点研发计划资助项目(2018YFC1802200,2018YFC1802205)。

详细信息
    作者简介:

    陈窈君(1994-),女,硕士,主要研究方向为土壤和地下水修复。chenyj2419@bgechina.cn

    通讯作者:

    李来顺(1989-),男,硕士,主要研究方向为土壤和地下水修复。lilaishun@bgechina.cn

RESEARCH ON WET DETOXIFICATION TECHNOLOGY OF CHROMITE ORE PROCESSING RESIDUE

  • 摘要: 以治理铬渣中的Cr(Ⅵ)污染为目的,提出了硫酸浸出-硫酸亚铁还原的铬渣湿法解毒工艺,在对铬渣处理前后的表面形貌进行表征的基础上,探究了不同处理条件下铬渣中Cr(Ⅵ)的处理效果及其修复机理。结果表明:铬渣湿法球磨时间为20 min时,铬渣颗粒98.68%过200目筛,水溶性Cr(Ⅵ)的浸出率可达40.96%;铬渣硫酸添加量为60%,液固比为4∶1,酸溶时间为2.5 h时,Cr(Ⅵ)浸出趋于饱和,此时浸出终点pH为5.8,水溶性和酸溶性Cr(Ⅵ)总浸出率为95.38%;硫酸亚铁添加量为40%时,铬渣中Cr(Ⅵ)含量下降为1.38 mg/kg。铬渣中Cr(Ⅵ)的去除主要与硫酸对含Cr(Ⅵ)矿物的溶解、SO42-和CrO42-的离子交换以及Fe(Ⅱ)对溶液中Cr(Ⅵ)的还原作用有关。
  • [1] LI Y Y, LIANG J L, YANG Z H, et al. Reduction and immobilization of hexavalent chromium in chromite ore processing residue using amorphous FeS2[J]. Science of the Total Environment, 2019, 658: 315-323.
    [2] 陈滨宇. 解毒铬渣堆放场周围环境铬污染规律研究[J]. 环境科学与技术, 1989, 47(4): 8-10.
    [3] WAZNE M, JAGUPILLA S C, MOON D H, et al. Assessment of calcium polysulfifide for the remediation of hexavalent chromium in chromite ore processing residue (COPR)[J]. Journal of Hazardous Materials, 2007, 143(3): 620-628.
    [4] MOON D H, WAZNE M, DERMATAS D, et al. Long-term treatment issues with hromite ore processing residue (COPR): Cr6+ reduction and heave [J]. Journal of Hazardous Materials, 2007, 143(3): 629-635.
    [5] 荣伟英, 周启星. 铬渣堆放场地土壤的污染过程、影响因素及植物修复[J]. 生态学杂志, 2010, 29(3): 598-604.
    [6] DERMATAS D, CHRYSOCHOOU M, MOON D H, et al. Ettringite-induced heave in hromite ore processing residue (COPR) upon ferrous sulfate treatment[J]. Environmental Science & Echnology, 2006, 40(18): 5786-5792.
    [7] 盛灿文, 柴立元, 王云燕,等. 铬渣的湿法解毒研究现状及发展前景[J]. 工业安全与环保, 2006, 32(2): 1-3.
    [8] LI Y Y, CUNDY A B, FENG J X, et al. Remediation of hexavalent chromium contamination in chromite ore processing residue by sodium dithionite and sodium phosphate addition and its mechanism[J]. Journal of Environmental Management, 2017, 192: 100-106.
    [9] JAGUPILLA S C, WAZNE M, MOON D H. Assessment of ferrous chloride and Portland cement for the remediation of chromite ore processing residue[J]. Chemosphere, 2015, 136: 95-101.
    [10] GEELHOED J S, MEEUSSEN J C N, ROE M J, et al. Effect of iron(Ⅱ) sulfate addition on chromium(Ⅵ) leaching from columns of chromite ore processing residue[J]. Environmental Science & Technology, 2003, 37(14): 3206-3213.
    [11] JAGUPILLA S C, MOONA D H, WAZNE M, et al. Effects of particle size and acid addition on the remediation of chromite ore processing residue using ferrous sulfate[J]. Journal of Hazardous Materials, 2009, 168: 121-128.
    [12] 宋艳, 杨志平, 康绍辉,等. 铬渣中Cr(Ⅵ)的浸出及还原试验研究[J]. 湿法冶金, 2017, 36(5):380-383.
    [13] 斯塔姆W, 摩尔根J. 水化学: 天然水体化学平衡导论[M]. 汤鸿霄,译. 北京:科学出版社, 1987, 129-134.
    [14] JAGANYI D, WHEELER P J. Rooibos tea: equilibrium and extraction kinetics of aspalathin[J]. Food Chemistry, 2003, 83: 121-126.
    [15] 刘帅霞. 两段式还原工艺解毒铬渣技术研究[D]. 上海:东华大学, 2013.
    [16] MATERN K, KLETTI H, MANSFELDT T. Chemical and mineralogical characterization of chromite ore processing residue from two recent Indian disposal sites[J]. Chemosphere, 2016, 155: 188-195.
    [17] YAO S, JING L, MIAO P, et al. Identification of Cr(Ⅵ) speciation in ferrous sulfate-reduced chromite ore processing residue (rCOPR) and impacts of environmental factors erosion on Cr(Ⅵ) leaching [J]. Journal of Hazardous Materials, 2019, 373: 389-396.
    [18] CHRYSOCHOOU M, DERMATAS D. Application of the Rietveld method to assess chromium(Ⅵ) speciation in chromite ore processing residue[J]. Journal of Hazardous Materials, 2007, 141(2): 370-377.
    [19] GUO B, SASAKI K, HIRAJIMA T, et al. Selenite and selenate uptaken in ettringite: immobilization mechanisms, coordination chemistry, and insights from structure[J]. Cement Concrete Research, 2017, 100: 166-175.
    [20] PAPASSIOPI N, VAXEVANIDOU K, CHRISTOU C, et al. Synthesis, characterization and stability of Cr(Ⅲ) and Fe(Ⅲ) hydroxides[J]. Journal of Hazardous Materials, 2014, 264: 490-497.
    [21] MILLS C T, BERN C R, WOLF R E, et al. Modifications to EPA method 3060A to improve extraction of Cr(Ⅵ) from chromium ore processing residue-contaminated soils[J]. Enviromental Science & Technology, 2017, 51(19): 11235-11243.
    [22] KARAMALIDIS A K, VOUDRIAS E A. Anion leaching from refinery oily sludge and ash from incineration of oily sludge stabilized/solidified with cement[J]. Environmental Science & Technology, 2008, 42(16): 6124-6130.
    [23] GLASSER F P. Fundamental aspects of cement solidification and stabilisation[J]. Journal of Hazardous Materials, 1997, 52(2/3): 151-170.
    [24] HILLIER S, ROE M J, GEELHOED J S, et al. Role of quantitative mineralogical analysis in the investigation of sites contaminated by chromite ore processing residue[J]. Science of the Total Environment, 2003, 308(1/2/3): 195-210.
    [25] WU J N, LI C L, YANG F. The disposition of chromite ore processing residue (COPR) incorporating industrial symbiosis[J]. Journal of Cleaner Production, 2015, 95: 156-162.
    [26] TINJUM J M, BENSON C H, EDIL T B. Mobilization of Cr(Ⅵ) from chromite ore processing residue through acid treatment[J]. The Science of the Total Environment, 2008, 391(1): 13-25.
    [27] VELASCO A, RAMÍREZ M, HERNÁNDEZ S, et al. Pilot scale treatment of chromite ore processing residue using sodium sulfide in single reduction and coupled reduction/stabilization processes[J]. Journal of Hazardous Materials, 2012, 207/208: 97-102.
    [28] YANG H S, CHE Y J, LENG F G. Calcium leaching behavior of cementitious materials in hydrochloric acid solution[J]. Scientific Reports, 2018, UK 8.
    [29] WAZNE M, JAGUPILLA S C, MOON D H, et al. Leaching mechanisms of Cr(Ⅵ) from chromite ore processing residue[J]. Journal of Environmental Quality, 2008, 37(6): 2125-2134.
    [30] CHRYSOCHOOU M, FAKRA S C, MARCUS M A, et al. Microstructural analyses of Cr(Ⅵ) speciation in chromite ore processing residue (COPR)[J]. Environmental Science & Technology, 2009, 43(14): 5461-5466.
    [31] MOON D H, WAZNE M, DERMATAS D, et al. Evaluation of ettringite-related swelling mechanisms for treated chromite ore processing residue[J]. Environmental Science and Pollution Research International, 2015, 22(1): 738-744.
    [32] 徐文彬.铬渣解毒与氧化铬清洁制备工艺的研究[D].长沙:中南大学,2011.
    [33] PALMER C D, WITTBRODT P R. Processes affecting the remediation of chromium-contaminated sites[J]. Environmental Health Perspectives, 1991, 92: 25-40.
    [34] WANG X, ZHANG J D, WANG L L, et al. Long-term stability of FeSO4 and H2SO4 treated chromite ore processing residue (COPR): importance of H+ and SO42-[J]. Journal of Hazardous Materials, 2017, 321: 720-727.
  • [1] 王雯璇, 陈晓彤, 章雨晨, 吴广毅, 廖瑜亮, 杨金燕.  微生物作用下土壤中水溶态Cr(Ⅵ)的迁移转化, 环境工程. doi: 10.13205/j.hjgc.202006007
    [2] 李来顺, 陈窈君, 吕正勇.  硫铁矿对Cr(Ⅵ)污染土壤的长效还原稳定化研究, 环境工程. doi: 10.13205/j.hjgc.202006009
    [3] 席冬冬, 李晓敏, 熊子璇, 姜智, 张晓明, 杨卫春.  生物炭负载纳米零价铁对污染土壤中铜钴镍铬的协同去除, 环境工程. doi: 10.13205/j.hjgc.202006010
    [4] 王冬, 刘畅, 李檬, 孙井梅.  含腐殖酸还原菌的污泥降解底泥中溶解性有机质, 环境工程.
    [5] 许维通, 苑文仪, 李培中, 吴泽兵, 王晓岩, 王景伟, 张承龙, 白建峰, 王临才.  六价铬污染土壤还原处理后再氧化因素分析综述, 环境工程. doi: 10.13205/j.hjgc.201810025
    [6] 梁广秋, 胡友彪, 储磊, 杨霄, 陈天明, 严金龙.  铁炭微电解还原Cr(Ⅵ)的动力学及其响应面法条件优化, 环境工程. doi: 10.13205/j.hjgc.201606011
    [7] 刘登峰, 秦传玉, 任黎明, 李博文, 董军.  黄原胶对多硫化钙还原地下水中Cr(Ⅵ)的影响, 环境工程. doi: 10.13205/j.hjgc.201601003
    [8] 孔令兵, 郭培民, 胡晓军.  高炉共处置铜渣中Cu、Fe元素还原的热力学分析, 环境工程. doi: 10.13205/j.hjgc.201502024
    [9] 张艺伯, 朱荣, 吴铁, 韩志强, 胡天麒, 张硕.  转炉钢渣重熔还原的尾渣安定性研究, 环境工程. doi: 10.13205/j.hjgc.201512035
    [10] 赵利刚, 蒲生彦, 杨金艳, 于静, 王有乐.  某铬渣堆场周边土壤地下水Cr~(6+)污染特征研究, 环境工程. doi: 10.13205/j.hjgc.201502026
    [11] 郝以党, 吴龙, 胡天麒, 张艺伯, 吴桐.  熔融铜渣中的金属提取及尾渣制矿棉探索试验, 环境工程. doi: 10.13205/j.hjgc.201502023
    [12] 徐天生, 欧杰, 马晨晨.  微生物还原Cr(Ⅵ)的机理研究进展, 环境工程. doi: 10.13205/j.hjgc.201501008
    [13] 李成梁, 孟菁华, 任杰, 马琦琦.  铬渣处理方法研究现状, 环境工程. doi: 10.13205/j.hjgc.201504024
    [14] 张艺伯, 朱桂林, 孙树杉, 胡天麒.  重熔还原法处理转炉钢渣研究, 环境工程. doi: 10.13205/j.hjgc.201407024
    [15] 郭丽莉, 许超, 李书鹏, 杨乐巍, 李珊.  铬污染土壤的生物化学还原稳定化研究, 环境工程. doi: 10.13205/j.hjgc.201410035
    [16] 张晓辉, 曹奇光, 谢国莉, 路鹏, 王军.  不同还原剂处理实验室Cr(Ⅵ)废水研究, 环境工程. doi: 10.13205/j.hjgc.201406015
    [17] 潘聪超, 郭培民, 庞建明.  含铬浸出渣调质解毒规律研究, 环境工程. doi: 10.13205/j.hjgc.201305024
    [18] 甄常亮, 那贤昭, 齐渊洪, 赵凯, 吕岩.  电炉渣铬浸出行为及资源化利用风险分析, 环境工程. doi: 10.13205/j.hjgc.201204027
    [19] 赵凯, 程相利, 齐渊洪, 甄常亮, 师学峰.  配碳还原回收铜渣中铁、铜的影响因素探讨, 环境工程. doi: 10.13205/j.hjgc.201202022
    [20] 刘帅霞, 陈亮, 高玉梅.  两段式还原工艺处理铬渣的生产性研究, 环境工程. doi: 10.13205/j.hjgc.201203026
  • 加载中
计量
  • 文章访问数:  1
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-28

目录

    /

    返回文章
    返回