中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米零价铁的制备技术及其应用研究进展

雍晓静 关翀 张昊 金政伟 姚敏

雍晓静, 关翀, 张昊, 金政伟, 姚敏. 纳米零价铁的制备技术及其应用研究进展[J]. 环境工程, 2020, 38(9): 14-22. doi: 10.13205/j.hjgc.202009003
引用本文: 雍晓静, 关翀, 张昊, 金政伟, 姚敏. 纳米零价铁的制备技术及其应用研究进展[J]. 环境工程, 2020, 38(9): 14-22. doi: 10.13205/j.hjgc.202009003
YONG Xiao-jing, GUAN Chong, ZHANG Hao, JIN Zheng-wei, YAO Min. RESEARCH PROGRESS IN PREPARATION TECHNOLOGY AND APPLICATION OF NANO-ZERO-VALENT IRON[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 14-22. doi: 10.13205/j.hjgc.202009003
Citation: YONG Xiao-jing, GUAN Chong, ZHANG Hao, JIN Zheng-wei, YAO Min. RESEARCH PROGRESS IN PREPARATION TECHNOLOGY AND APPLICATION OF NANO-ZERO-VALENT IRON[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 14-22. doi: 10.13205/j.hjgc.202009003

纳米零价铁的制备技术及其应用研究进展

doi: 10.13205/j.hjgc.202009003
基金项目: 

2018年宁夏回族自治区重点研发计划一般科技项目(2018BDE63020)。

详细信息
    作者简介:

    雍晓静(1978-),女,在读博士研究生,研究方向为煤化工技术开发及水资源利用。377748087@qq.com

    通讯作者:

    姚敏(1965-),男,博士,正高级工程师,研究方向为煤化工技术、固废综合利用及水处理等。15010247@chnenergy.com.cn

RESEARCH PROGRESS IN PREPARATION TECHNOLOGY AND APPLICATION OF NANO-ZERO-VALENT IRON

  • 摘要: 纳米零价铁(nZVI)因具有还原性强、粒径小、比表面积大等特性,对重金属及含卤有机污染物等具有良好的吸附特性和反应活性,在环境修复方面表现出较好的应用前景。但nZVI易氧化、团聚和机械强度低等不利因素限制了其大规模应用。系统比较了机械法、气体冷凝法及还原法制备nZVI技术的特点,重点总结表面改性、金属改性、载体负载和基质封装等手段制备改性nZVI的研究进展,及其在水体及土壤环境修复方面的应用。
  • [1] 王世林,滕玮. 多孔材料负载型纳米零价铁的制备及其在环境中的应用进展[J]. 山东化工,2019,48(3):24-26.
    [2] ZOU Y D, WANG X X, KHAN A, et al. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions:a review[J]. Environmental Science & Technology, 2016, 50(14):7290-7304.
    [3] STEFANIUK M, OLESZCZUK P, OK Y S. Review on nano zerovalent iron (nZVI):from synthesis to environmental applications[J]. Chemical Engineering Journal, 2016, 287:618-632.
    [4] 周书葵,李智东,刘迎九,等. 纳米零价铁对铀尾矿库土壤中铀形态分布及固定效果的影响[J].环境工程学报,2019,13(7):1727-1734.
    [5] 江万权, 朱春玲, 陈祖耀, 等. 超细α-Fe粒子对磁性粒子浓悬浮体系磁流变性能的增强[J]. 化学物理学报, 2001, 14(5):630-633.
    [6] MALOW T R, KOCH C C. Grain growth in nanocrystalline iron prepared by mechanical attrition[J]. Acta Materialia, 1997, 45(5):2177-2186.
    [7] CAGNETTA G, HUANG J, LOMOVSKIY I O, et al. Tailoring the properties of a zero-valent iron-based composite by mechanochemistry for nitrophenols degradation in wastewaters[J]. Environmental Technology, 2017, 38(22):2916-2927.
    [8] RIBAS D, PEŠKOVÁ K, JUBANY I, et al. High reactive nano zero-valent iron produced via wet milling through abrasion by alumina[J]. Chemical Engineering Journal, 2019, 366:235-245.
    [9] AKHGAR B N, POURGHAHRAMANI P. Mechanochemical reduction of natural pyrite by aluminum and magnesium[J]. Journal of Alloys and Compounds, 2016, 657:144-151.
    [10] HUANG D W, HE J, GU Y W, et al. Mechanochemically sulfidated zero valent iron as an efficient fenton-like catalyst for degradation of organic contaminants[J]. Acta Chimica Sinica, 2017, 75(9):866-872.
    [11] 郭晶晶. 蒙脱石/零价铁纳米复合材料修复水体重金属污染效率及机理研究[D]. 呼和浩特:内蒙古大学, 2014.
    [12] 李发伸, 杨文平, 薛德胜. 纳米铁微粒的制备及研究[J]. 兰州大学学报(自然科学版), 1994, 30(1):144-146.
    [13] DE A, DE A K, PANDA G S, et al. Synthesis of zero valent iron nanoparticle and its application as a dephenolization agent for coke oven plant wastewater situated in West Bengal:India[J]. Environmental Progress & Sustainable Energy, 2017, 36(6):1700-1708.
    [14] JIA T T, WANG Z Z, SHAN H Q, et al. Effect of nanoscale zero-valent iron on sludge anaerobic digestion[J]. Resources, Conservation and Recycling, 2017, 127:190-195.
    [15] DING X Z, QI Z Z, HE Y Z. Effect of hydrolysis water on the preparation of nano-crystalline titania powders via a sol-gel process[J]. Journal of Materials Science Letters, 1995, 14(1):21-22.
    [16] WANG C B, ZHANG W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs[J]. Environmental Science & Technology, 1997, 31(7):2154-2156.
    [17] GUSELNIKOVA O A, GALANOV A I, GUTAKOVSKII A K, et al. The convenient preparation of stable aryl-coated zerovalent iron nanoparticles[J]. Beilstein Journal of Nanotechnology, 2015, 6(1):1192-1198.
    [18] MUKHERJEE R, KUMAR R, SINHA A, et al. A review on synthesis, characterization, and applications of nano zero valent iron (nZVI) for environmental remediation[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(5):443-466.
    [19] VALLE O M, DIAZ D, SANTIAGO J P, et al. Instantaneous synthesis of stable zerovalent metal nanoparticles under standard reaction conditions[J]. The Journal of Physical Chemistry B, 2008, 112(46):14427-14434.
    [20] WANG X, LE L, ALVAREZ P J, et al. Synthesis and characterization of green agents coated Pd/Fe bimetallic nanoparticles[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 50:297-305.
    [21] LI D Y, ZHU J S, WU J H, et al. Development of an activated carbon-supported zero-valent iron catalyst (AC-Fe0) for enhancing degradation of reactive brilliant orange and reducing iron sludge production[J]. Environmental Progress & Sustainable Energy, 2016, 35(4):949-956.
    [22] LAWRINENKO M, WANG Z J, HORTON R, et al. Macroporous carbon supported zerovalent iron for remediation of trichloroethylene[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2):1586-1593.
    [23] HOCH L B, MACK E J, HYDUTSKY B W, et al. Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium[J]. Environmental Science & Technology, 2008, 42(7):2600-2605.
    [24] BYSTRZEJEWSKI M. Synthesis of carbon-encapsulated iron nanoparticles via solid state reduction of iron oxide nanoparticles[J]. Journal of Solid State Chemistry, 2011, 184(6):1492-1498.
    [25] YOO B Y, HERNANDEZ S C, KOO B, et al. Electrochemically fabricated zero-valent iron, iron-nickel, and iron-palladium nanowires for environmental remediation applications[J]. Water Science and Technology, 2007, 55(1/2):149-156.
    [26] ROZMAN K Z, PECKO D, TRAFELA S, et al. Austenite-martensite transformation in electrodeposited Fe70Pd30 NWs:a step towards making bio-nano-actuators tested on in vivo systems[J]. Smart Materials and Structures, 2018, 27(3):035018.
    [27] TABAKOVIC I, VENKATASAMY V. Preparation of metastable CoFeNi alloys with ultra-high magnetic saturation (Bs=2.4-2.59 T) by reverse pulse electrodeposition[J]. Journal of Magnetism and Magnetic Materials, 2018, 452:306-314.
    [28] HOAG G E, COLLINS J B, HOLCOMB J L, et al. Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols[J]. Journal of Materials Chemistry, 2009, 19(45):8671-8677.
    [29] HERLEKAR M, BARVE S, KUMAR R. Plant-mediated green synthesis of iron nanoparticles[J]. Journal of Nanoparticles, 2014, 2014:1-9.
    [30] MYSTRIOTI C, XENIDIS A, PAPASSIOPI N. Reduction of hexavalent chromium with polyphenol-coated nano zero-valent iron:column studies[J]. Desalination and Water Treatment, 2015, 56(5):1162-1170.
    [31] MYSTRIOTI C, SPARIS D, PAPASIOPI N, et al. Assessment of polyphenol coated nano zero valent iron for hexavalent chromium removal from contaminated waters[J]. Bulletin of Environmental Contamination and Toxicology, 2015, 94(3):302-307.
    [32] MYSTRIOTI C, XENIDIS A, PAPASSIOPI N. Application of iron nanoparticles synthesized by green tea for the removal of hexavalent chromium in column tests[J]. Journal of Geoscience and Environment Protection, 2014, 2(4):28-36.
    [33] CHRYSOCHOOU M, JOHNSTON C P, DAHAL G. A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron[J]. Journal of Hazardous Materials, 2012, 201:33-42.
    [34] WANG T, JIN X Y, CHEN Z L, et al. Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater[J]. Science of the Total Environment, 2014, 466:210-213.
    [35] WANG T, LIN J J, CHEN Z L, et al. Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution[J]. Journal of Cleaner Production, 2014, 83:413-419.
    [36] TESH S J, SCOTT T B. Nano-composites for water remediation:a review[J]. Advanced Materials, 2014, 26(35):6056-6068.
    [37] 张瑾,魏才倢,白鸽,等. 多聚物吸附纳米零价铁在多孔介质中的迁移[J].中国环境科学,2018,38(10):3747-3754.
    [38] 张彬彬,王向宇. 柠檬酸改性核桃壳粉负载纳米零价铁的制备及EDTA优化去除四环素[J].环境工程学报,2018,12(12):3316-3323.
    [39] TOSCO T, PAPINI M P, VIGGI C C, et al. Nanoscale zerovalent iron particles for groundwater remediation:a review[J]. Journal of Cleaner Production, 2014, 77:10-21.
    [40] LIANG D W, YANG Y H, XU W W, et al. Nonionic surfactant greatly enhances the reductive debromination of polybrominated diphenyl ethers by nanoscale zero-valent iron:mechanism and kinetics[J]. Journal of Hazardous Materials, 2014, 278:592-596.
    [41] 韩建江,李常锁,温春宇,等. 乳化纳米铁浆液在含水层中的迁移特征研究[J].中国环境科学,2018,38(6):2175-2181.
    [42] LAUMANN S, MICIĆ V, HOFMANN T. Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes[J]. Water Research, 2014, 50:70-79.
    [43] LIN Y H, TSENG H H, WEY M Y, et al. Characteristics of two types of stabilized nano zero-valent iron and transport in porous media[J]. Science of the Total Environment, 2010, 408(10):2260-2267.
    [44] BONDER M J, ZHANG Y, KIICK K L, et al. Controlling synthesis of Fe nanoparticles with polyethylene glycol[J]. Journal of Magnetism and Magnetic Materials, 2007, 311(2):658-664.
    [45] RAO J P, GRUENBERG P, GECKELER K E. Magnetic zero-valent metal polymer nanoparticles:current trends, scope, and perspectives[J]. Progress in Polymer Science, 2015, 40:138-147.
    [46] WANG W, LI S L, LEI H, et al. Enhanced separation of nanoscale zero-valent iron (nZVI) using polyacrylamide:Performance, characterization and implication[J]. Chemical Engineering Journal, 2015, 260:616-622.
    [47] XIONG Z, ZHAO D Y, PAN G. Rapid and complete destruction of perchlorate in water and ion-exchange brine using stabilized zero-valent iron nanoparticles[J]. Water Research, 2007, 41(15):3497-3505.
    [48] NAJA G, HALASZ A, THIBOUTOT S, et al. Degradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) using zerovalent iron nanoparticles[J]. Environmental Science & Technology, 2008, 42(12):4364-4370.
    [49] DONG H R, XIE Y K, ZENG G M, et al. The dual effects of carboxymethyl cellulose on the colloidal stability and toxicity of nanoscale zero-valent iron[J]. Chemosphere, 2016, 144:1682-1689.
    [50] TIRAFERRI A, CHEN K L, SETHI R, et al. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum[J]. Journal of Colloid and Interface Science, 2008, 324(1/2):71-79.
    [51] YAN W L, LIEN H L, KOEL B E, et al. Iron nanoparticles for environmental clean-up:recent developments and future outlook[J]. Environmental Science:Processes & Impacts, 2013, 15(1):63-77.
    [52] AMEN T W M, ELJAMAL O, KHALIL A M E, et al. Wastewater degradation by iron/copper nanoparticles and the microorganism growth rate[J]. Journal of Environmental Sciences, 2018, 74:19-31.
    [53] LEE S D, MALLAMPATI S R, Lee B H. Enhanced removal of ethanolamine from secondary system of nuclear power plant wastewater by novel hybrid nano zero-valent iron and pressurized ozone initiated oxidation process[J]. Environmental Science and Pollution Research, 2017, 24(21):17769-17778.
    [54] KHALIL A M E, ELJAMAL O, SAHA B, et al. Performance of nanoscale zero-valent iron in nitrate reduction from water using a laboratory-scale continuous-flow system[J]. Chemosphere, 2018, 197:502-512.
    [55] 赵云,祝方,任文涛. 绿色合成纳米零价铁镍去除地下水中硝酸盐的动力学研究[J].环境工程,2018,36(7):71-76.
    [56] WANG X Y, WANG T, MA J, et al. Synthesis and characterization of a new hydrophilic boehmite-PVB/PVDF blended membrane supported nano zero-valent iron for removal of Cr(Ⅵ)[J]. Separation and Purification Technology, 2018, 205:74-83.
    [57] YAN J C, HAN L, GAO W G, et al. Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene[J]. Bioresource Technology, 2015, 175:269-274.
    [58] MA H L, QI X R, MAITANI Y, et al. Preparation and characterization of superparamagnetic iron oxide nanoparticles stabilized by alginate[J]. International Journal of Pharmaceutics, 2007, 333(1/2):177-186.
    [59] RAVIKUMAR K V G, KUMAR D, RAJESHWARI A, et al. A comparative study with biologically and chemically synthesized nZVI:applications in Cr (Ⅵ) removal and ecotoxicity assessment using indigenous microorganisms from chromium-contaminated site[J]. Environmental Science and Pollution Research, 2016, 23(3):2613-2627.
    [60] 康海彦, 杨治广, 万园园. β-环糊精包埋纳米零价铁对Cd 2+的去除性能研究[J]. 环境工程, 2015,33(5):122-125.
    [61] 颜小星, 柳听义, 王中良. 壳聚糖-纳米零价铁球去除水中二价镉的研究[J]. 天津师范大学学报(自然科学版), 2014, 34(3):42-46.
    [62] 曾淦宁, 武晓, 郑林, 等. 负载纳米零价铁铜藻基活性炭的制备及其去除水中Cr (Ⅵ)的研究[J]. 环境科学, 2015, 36(2):530-536.
    [63] 何元渊, 祁彩菊, 仲万军, 等. 核桃壳负载纳米零价铁吸附废水中Pb2+[J]. 精细化工, 2014, 31(4):480-485.
    [64] 杨麒, 伍秀琼, 钟宇, 等. 活性炭负载纳米零价铁去除溴酸盐的研究[J]. 湖南大学学报(自然科学版), 2013, 40(12):97-102.
    [65] KHALIL A M E, ELJAMAL O, AMEN T W M, et al. Optimized nano-scale zero-valent iron supported on treated activated carbon for enhanced nitrate and phosphate removal from water[J]. Chemical Engineering Journal, 2017, 309:349-365.
    [66] ZHU H J, JIA Y F, WU X, et al. Removal of arsenic from water by supported nano zero-valent iron on activated carbon[J]. Journal of Hazardous Materials, 2009, 172(2/3):1591-1596.
    [67] YUSMARTINI E S, FAIZAL M. Remediation of leachate by composite NZVI-activated carbon in packed column[C]. MATEC Web of Conferences. EDP Sciences, 2017, 101:02009.
    [68] TENG W, FAN J W, WANG W, et al. Nanoscale zero-valent iron in mesoporous carbon (nZVI@C):stable nanoparticles for metal extraction and catalysis[J]. Journal of Materials Chemistry A, 2017, 5(9):4478-4485.
    [69] SU C J, CAO G H, LOU S, et al. Treatment of cutting fluid waste using activated carbon fiber supported nanometer iron as a heterogeneous fenton catalyst[J]. Scientific Reports, 2018, 8(1):10650.
    [70] CHEN S, BEDIA J, LI H, et al. Nanoscale zero-valent iron@mesoporous hydrated silica core-shell particles with enhanced dispersibility, transportability and degradation of chlorinated aliphatic hydrocarbons[J]. Chemical Engineering Journal, 2018, 343:619-628.
    [71] LIAO R H, MIAO Y, HONG Y, et al. Nitrate reduction using nanoscale zero valent iron supported by porous suspended ceramsite[C]. Advanced Materials Research. Trans Tech Publications, 2013, 726:677-682.
    [72] WANG Q M, REN G F, JIA F F, et al. Preparation and characterization of nanoscale zero-valent iron-loaded porous sepiolite for decolorizing methylene blue in aqueous solutions[J]. JOM, 2017, 69(4):699-703.
    [73] CHI Z X, WANG Z, CHU H Q, et al. Bentonite-supported nanoscale zero-valent iron granulated electrodes for industrial wastewater remediation[J]. RSC Advances, 2017, 7(70):44605-44613.
    [74] 王顺利, 王秀红, 周新初, 等. 沸石-纳米零价铁的制备及其对溶液中Cu2+的吸附研究[J]. 农业环境科学学报, 2017, 36(3):583-590.
    [75] CHI Z X, WANG Z, LIU Y, et al. Preparation of organosolv lignin-stabilized nano zero-valent iron and its application as granular electrode in the tertiary treatment of pulp and paper wastewater[J]. Chemical Engineering Journal, 2018, 331:317-325.
    [76] LI G, XU Q Y, JIN X Y, et al. Enhanced adsorption and Fenton oxidation of 2,4-dichlorophenol in aqueous solution using organobentonite supported nZVI[J]. Separation and Purification Technology, 2018, 197:401-406.
    [77] LI Z T, WANG L, MENG J, et al. Zeolite-supported nanoscale zero-valent iron:new findings on simultaneous adsorption of Cd(Ⅱ), Pb (Ⅱ), and As (Ⅲ) in aqueous solution and soil[J]. Journal of Hazardous Materials, 2018, 344:1-11.
    [78] VILARDI G, OCHANDO-PULIDO J M, STOLLER M, et al. Fenton oxidation and chromium recovery from tannery wastewater by means of iron-based coated biomass as heterogeneous catalyst in fixed-bed columns[J]. Chemical Engineering Journal, 2018, 351:1-11.
    [79] 刘宸, 李小燕, 刘晴晴, 等. 用负载纳米零价铁的改性沸石从溶液中去除U (Ⅵ)试验研究[J]. 湿法冶金, 2018,37(4):320-325.
  • [1] 陈颖青, 文越, 王雪野, 李震, 彭争梁, 吕瑞滨, 沈怡雯, 王志伟.  基于季铵盐添加的改性环氧树脂涂层的制备及其抑藻性能研究, 环境工程. doi: 10.13205/j.hjgc.202001012
    [2] 席冬冬, 李晓敏, 熊子璇, 姜智, 张晓明, 杨卫春.  生物炭负载纳米零价铁对污染土壤中铜钴镍铬的协同去除, 环境工程. doi: 10.13205/j.hjgc.202006010
    [3] 王会刚, 彭犇, 岳昌盛, 吴龙, 邱桂博, 白智韬, 张梅, 郭敏.  钢渣改性研究进展及展望, 环境工程. doi: 10.13205/j.hjgc.202005023
    [4] 黄湘云, 何文艳, 李金鑫, 杨金燕.  酸热活化、有机化、柱撑改性海泡石对土壤中钒的吸附固定, 环境工程. doi: 10.13205/j.hjgc.202002020
    [5] 姜星颖, 曲建华, 孟宪林.  微波辅助改性稻壳的制备及其对Cd(Ⅱ)的吸附特性, 环境工程. doi: 10.13205/j.hjgc.201905011
    [6] 胡术刚, 栾小凯, 颜昌宙, 罗专溪.  改性生物炭的制备及其对水中镉离子的吸附试验, 环境工程. doi: 10.13205/j.hjgc.201905003
    [7] 祝方, 刘涛, 石建惠.  绿色合成纳米零价铁铜淋洗修复Cr(Ⅵ)污染土壤, 环境工程. doi: 10.13205/j.hjgc.201904033
    [8] 祝天宇, 卢泽玲, 刘月娥, 汪诚文, 徐康宁.  镁改性生物炭制备条件对其氮、磷去除性能的影响, 环境工程. doi: 10.13205/j.hjgc.201801008
    [9] 赵云, 祝方, 任文涛.  绿色合成纳米零价铁镍去除地下水中硝酸盐的动力学研究, 环境工程. doi: 10.13205/j.hjgc.201807015
    [10] 江宇, 朱加豆, 李荣, 王东田.  净水污泥负载零价纳米铁去除水中Cr(VI), 环境工程. doi: 10.13205/j.hjgc.201809004
    [11] 范少蓓, 许仕荣, 文武.  氧化锰改性活性炭的优化制备及其对Cd(Ⅱ)的吸附研究, 环境工程. doi: 10.13205/j.hjgc.201705008
    [12] 陈艺, 文梅燕, 马芝兰.  纳米铁炭复合材料的制备及对水中镉(Cd)污染的修复, 环境工程. doi: 10.13205/j.hjgc.201610014
    [13] 唐彬彬, 刘国, 周雅琪, 张俊杰, 陈西亮.  纳米铁炭复合材料的制备及硝酸盐去除效果的研究, 环境工程. doi: 10.13205/j.hjgc.201603010
    [14] 孙靖武, 刘宏菊, 孙也.  甘蔗渣负载纳米零价铁吸附剂去除水中Cr(Ⅵ)的研究, 环境工程. doi: 10.13205/j.hjgc.201601035
    [15] 康海彦, 杨治广, 万园园.  β-环糊精包埋纳米零价铁对Cd~(2+)的去除性能研究, 环境工程. doi: 10.13205/j.hjgc.201505026
    [16] 罗婷, 蒋珍茂, 任志杰, 周梅竹, 周宏光.  树脂基纳米零价铁复合材料的制备及其去除重金属铅Pb(Ⅱ)的性能研究, 环境工程. doi: 10.13205/j.hjgc.201505001
    [17] 张俊香, 黄学敏, 曹利, 马广大.  负载Cu改性活性炭吸附VOCs性能的研究, 环境工程. doi: 10.13205/j.hjgc.201501022
    [18] 王进喜, 常青, 王亚军.  一种改性高分子絮凝剂的制备, 环境工程. doi: 10.13205/j.hjgc.201405011
    [19] 周键, 王三反.  钛基二氧化铅阳极去除有机污染物的研究进展, 环境工程. doi: 10.13205/j.hjgc.201412001
    [20] 许莹, 王伟, 胡宾生.  由高炉废泥提纯制备纳米级零价铁, 环境工程. doi: 10.13205/j.hjgc.200703020
  • 加载中
计量
  • 文章访问数:  25
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-09

目录

    /

    返回文章
    返回