CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

游离氨(FA)对SBR短程硝化过程微生物菌群结构及多样性的影响

吴代顺 常焕焕 陈翠忠 杨浩 侯红勋 孙洪伟

吴代顺, 常焕焕, 陈翠忠, 杨浩, 侯红勋, 孙洪伟. 游离氨(FA)对SBR短程硝化过程微生物菌群结构及多样性的影响[J]. 环境工程, 2021, 39(3): 82-89. doi: 10.13205/j.hjgc.202103012
引用本文: 吴代顺, 常焕焕, 陈翠忠, 杨浩, 侯红勋, 孙洪伟. 游离氨(FA)对SBR短程硝化过程微生物菌群结构及多样性的影响[J]. 环境工程, 2021, 39(3): 82-89. doi: 10.13205/j.hjgc.202103012
WU Dai-shun, CHANG Huan-huan, CHEN Cui-zhong, YANG Hao, HOU Hong-xun, SUN Hong-wei. EFFECTS OF FREE AMMONIA (FA) ON STRUCTURE AND DIVERSITY OF MICROFLORA IN SBR SHORT-CUT NITRIFICATION PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 82-89. doi: 10.13205/j.hjgc.202103012
Citation: WU Dai-shun, CHANG Huan-huan, CHEN Cui-zhong, YANG Hao, HOU Hong-xun, SUN Hong-wei. EFFECTS OF FREE AMMONIA (FA) ON STRUCTURE AND DIVERSITY OF MICROFLORA IN SBR SHORT-CUT NITRIFICATION PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 82-89. doi: 10.13205/j.hjgc.202103012

游离氨(FA)对SBR短程硝化过程微生物菌群结构及多样性的影响

doi: 10.13205/j.hjgc.202103012
详细信息
    作者简介:

    吴代顺(1976-),男,副教授,主要研究方向为水污染控制工程。765102712@qq.com

    通讯作者:

    孙洪伟(1976-),男,教授,主要研究方向为水体污染控制。12821306@qq.com

EFFECTS OF FREE AMMONIA (FA) ON STRUCTURE AND DIVERSITY OF MICROFLORA IN SBR SHORT-CUT NITRIFICATION PROCESS

  • 摘要: 为探究游离氨(FA)对硝化过程影响的机理,试验以人工模拟废水为研究对象,基于16S rRNA基因-Illumina MiSeq高通量测序技术,采用4组平行的SBR反应器(进水FA浓度分别控制为0.5,5,10,15 mg/L,分别记为R0.5、R5、R10和R15),探究了微生物在不同FA浓度条件下的群落组成和结构特征。结果表明:FA会显著影响系统内微生物菌群结构和功能。R0.5的α多样性指数(包括Chao1、ACE、Shannon和Simpson指数)在4组反应器中均为最大,说明R0.5的物种多样性最高,而R15的物种多样性最低。此外,在微生物门水平上,变形菌门Proteobacteria(45.9%~70.5%)和拟杆菌门Bacteroidetes(11.8%~41.3%)最具优势,且变形菌门(Proteobacteria)的相对丰度随着FA浓度升高而升高。在微生物属水平上,动胶菌属Zoogloea和陶厄氏菌属Thauera最具优势,且亚硝化单胞菌属(Nitrosomonas)和硝化螺旋菌属(Nitrospira)在R10中丰度明显高于其他3个系统。基于LEfSe分析,共获得了25个具有显著差异的微生物标记物,从而得到了各FA浓度条件下在微生物学分类水平上的菌群关键生物标记物。
  • [1] ANTHONISEN A C,LOEHR R C,PRAKASAM T B,et al. Inhibition of nitrification by ammonia and nitrous acid[J]. Journal Water Pollution Control Federation, 1976, 48(5):835-852.
    [2] KIM D J, LEE D I, KELLER J R. Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by fish[J]. Bioresource Technology, 2005, 97(3):459-468.
    [3] CHUNG J W, SHIM H, PARK S J,et al. Optimization of free ammonia concentration for nitrite accumulation in shortcut biological nitrogen removal process[J]. Bioprocess and Biosystems Engineering, 2006, 28(4):275-282.
    [4] CHUNG J,SHIM H,LEE Y W,et al. Comparison of influence of free ammonia and dissolved oxygen on nitrite accumulation between suspended and attached cells[J]. Environmental Technology, 2005, 26(1):21-33.
    [5] VLAEMINCK S E,TERADA A,SMETS B F,et al. Nitrogen removal from digested black water by one-stage partial nitritation and anammox[J]. Environmental Science & Technology, 2009, 43(13):5035-5041.
    [6] SUI Q W,LIU C,ZHANG J Y,et al. Response of nitrite accumulation and microbial community to free ammonia and dissolved oxygen treatment of high ammonium wastewater[J]. Applied Microbiology and Biotechnology, 2016, 100(9):4177-4187.
    [7] ZENG W,ZHANG Y,LI L,et al. Control and optimization of nitrifying communities for nitritation from domestic wastewater at room temperatures[J]. Enzyme and Microbial Technology, 2009, 45(3):226-232.
    [8] SCHUSTER S C. Next-generation sequencing transforms today's biology[J]. Nature Methods, 2008, 5(1):16-18.
    [9] CHU Y J,COREY D R. Rna sequencing:platform selection, experimental design, and data interpretation[J]. Nucleic Acid Therapeutics, 2012, 22(4):271-274.
    [10] 王绍祥,杨洲祥,孙真,等.高通量测序技术在水环境微生物群落多样性中的应用[J].化学通报,2014,77(3):196-203.
    [11] 刘驰,李家宝,芮俊鹏,等.16S rRNA基因在微生物生态学中的应用[J].生态学报,2015,35(9):2769-2788.
    [12] CAO J S, YU Y X, XIE K, et al. Characterizing the free ammonia exposure to the nutrients removal in activated sludge systems[J]. RSC Advances,2017, 7(87):55088-55097.
    [13] JETTEN S M M,LOGEMANN S,MUYZER G,et al. Novel principles in the microbial conversion of nitrogen compounds[J]. Antonie Van Leeuwenhoek, 1997, 71(1/2):75-93.
    [14] 蒙爱红,左剑恶,杨洋.高浓度氨氮废水的短程硝化研究[J].中国给水排水,2002,18(11):43-45.
    [15] LOZUPONE C A,HAMADY M,KELLEY S T,et al. Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities[J]. Applied and Environmental Microbiology, 2007, 73(5):1576-1585.
    [16] ZHANG T,SHAO M F,YE L. 454 pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants[J]. The ISME Journal, 2012, 6(6):1137-1147.
    [17] FANG D X,ZHAO G,XU X Y,et al. Microbial community structures and functions of wastewater treatment systems in plateau and cold regions[J]. Bioresource Technology, 2018, 249:684-693.
    [18] NORISUKE USHIKI,HIROTSUGU FUJITANI,YOSHITERU AOI,et al. Isolation of nitrospira belonging to sublineage ii from a wastewater treatment plant[J]. Microbes and Environments, 2013, 28(3):346-353.
    [19] GILBERT E M,AGRAWAL S,BRUNNER F, et al. Response of different nitrospira species to anoxic periods depends on operational do[J]. Environmental Science & Technology, 2014, 48(5):2934-2941.
    [20] CAROLINA C,GIULIO M,GIULIO P,et al. Characterization and comparison of bacterial communities selected in conventional activated sludge and membrane bioreactor pilot plants:a focus on Nitrospira and Planctomycetes bacterial phyla[J]. Current Microbiology, 2013, 67(1):77-90.
  • 加载中
计量
  • 文章访问数:  94
  • HTML全文浏览量:  6
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-15
  • 网络出版日期:  2021-07-19

目录

    /

    返回文章
    返回