CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水溶液性质与水污染控制工艺相互作用的重要性

韦朝海 关翔鸿 韦庚锐 李泽敏 韦托 陈啊聪

韦朝海, 关翔鸿, 韦庚锐, 李泽敏, 韦托, 陈啊聪. 水溶液性质与水污染控制工艺相互作用的重要性[J]. 环境工程, 2021, 39(11): 28-40. doi: 10.13205/j.hjgc.202111003
引用本文: 韦朝海, 关翔鸿, 韦庚锐, 李泽敏, 韦托, 陈啊聪. 水溶液性质与水污染控制工艺相互作用的重要性[J]. 环境工程, 2021, 39(11): 28-40. doi: 10.13205/j.hjgc.202111003
WEI Chao-hai, GUAN Xiang-hong, WEI Geng-rui, LI Ze-min, WEI Tuo, CHEN A-cong. THE NEXUS IMPORTANCE OF AQUEOUS SOLUTION PROPERTIES AND WATER POLLUTION CONTROL PROCESSES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 28-40. doi: 10.13205/j.hjgc.202111003
Citation: WEI Chao-hai, GUAN Xiang-hong, WEI Geng-rui, LI Ze-min, WEI Tuo, CHEN A-cong. THE NEXUS IMPORTANCE OF AQUEOUS SOLUTION PROPERTIES AND WATER POLLUTION CONTROL PROCESSES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 28-40. doi: 10.13205/j.hjgc.202111003

水溶液性质与水污染控制工艺相互作用的重要性

doi: 10.13205/j.hjgc.202111003
基金项目: 

国家自然科学基金(U1901218);广东省科技计划项目(2018A050506009)。

详细信息
    作者简介:

    韦朝海(1962-),男,博士,教授。主要研究方向为水污染控制理论与技术。cechwei@scut.edu.cn

    通讯作者:

    韦朝海(1962-),男,博士,教授。主要研究方向为水污染控制理论与技术。cechwei@scut.edu.cn

THE NEXUS IMPORTANCE OF AQUEOUS SOLUTION PROPERTIES AND WATER POLLUTION CONTROL PROCESSES

  • 摘要: 从自然演化、人类活动、科学发展角度分析污废水的产生机制及其对天然水体溶液性质的影响,发现人类迁徙的城镇化以及工农业生产的效率约束导致污废水与天然径流之间的矛盾,使生态水体呈现出由地表纯净水向水质污染方向的功能转化,扰动了元素/化合物在地球表面或水体界面的离心与向心迁移的平衡,明确了水体界面或水圈作为物质地球循环中转站/转运站的原理机制。隐藏在各种水处理工艺原理中的物理、化学、物化、生化等丰富功能能够解决中转站中所积累的矛盾,所以,集合溶液性质与污废水处理工艺原理之间的对应关系及其技术应用将构成更加完备和潜在的水工业,所提出的水溶液性质概念同样适用于给水与纯净水的生产与管理。针对有毒/难降解的工业有机废水,如煤化工行业焦化废水,在前端工艺清洁生产的基础上,需要把产品资源回收、性质互补利用、水量循环机制作为共性目标,把低能耗与物耗、关键污染物去除以及明确环境风险归趋作为污染控制工艺选择的依据,同时要求全过程产生低的二次污染如碳排放等。基于水溶液性质的改变及其过程演变的探究将拓宽水污染控制的工艺理论与技术边界。水污染控制与水环境保护相结合的水工业全过程追求技术、经济与社会目标的一致,争取得到绿色、低碳、循环等生态目标的响应,即生活、生产、生态"三位一体"的协调发展。
  • [1] 中华人民共和国国家统计局, 中华人民共和国生态环境部. 北京:中国环境统计年鉴2019[M]. 中国水利水电出版社, 2021.
    [2] 中华人民共和国水利部. 中国水利统计年鉴2020[M]. 北京:中国水利水电出版社, 2020.
    [3] 中华人民共和国水利部. 2020年中国水资源公报[DB/OL]. http://www.mwr.gov.cn/sj/tjgb/szygb/202107/P020210712355794160191.pdf 2021

    -07-13/2021-08-01.
    [4] 世界银行. 年度淡水抽取量(占内部资源的百分比)[DB/OL]. https://data.worldbank.org.cn/indicator/ER.H2O.FWTL.ZS?view=chart.
    [5] 世界银行. GDP(现价美元)[DB/OL]. https://data.worldbank.org.cn/indicator/NY.GDP.MKTP.CD.
    [6] BELL M L, DAVIS D L. Reassessment of the lethal London fog of 1952:novel indicators of acute and chronic consequences of acute exposure to air pollution[J]. Environmental Health Perspectives, 2001, 109:389-394.
    [7] WHITE W H, ROBERTS P T. On the nature and origins of visibility-reducing aerosols in the Los Angeles air basin[J]. Atmospheric Environment, 1977, 11(9):803-812.
    [8] TONG Y J, CAI J J, ZHANG Q, et al. Life cycle water use and wastewater discharge of steel production based on material-energy-water flows:a case study in China[J]. Journal of Cleaner Production, 2019, 241:118410.
    [9] WEI C, WU H P, KONG Q P, et al. Residual chemical oxygen demand (COD) fractionation in bio-treated coking wastewater integrating solution property characterization[J]. Journal of Environmental Management, 2019, 246:324-333.
    [10] CHAN Y J, CHONG M F, LAW C L, et. al. A review on anaerobic-aerobic treatment of industrial and municipal wastewater[J]. Chemical Engineering Journal, 2009, 155(1/2):1-18.
    [11] 韦朝海,周红桃,黄晶,等. 污水的内含能及污水处理过程的耗能与节能[J]. 土木与环境工程学报(中英文), 2019, 41(5):151-163.
    [12] 韦聪, 李磊, 吕文英, 等. 工业废水CODCr测定方法与技术发展过程分析[J]. 中国测试, 2017, 43(7):1-9.
    [13] MALAJ E, Von Der OHE P C, GROTE M, et al. Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111:9549-9554.
    [14] HONG H B, WANG L C, SHAO J, et al. A miniature CCA public key encryption scheme based on non-abelian factorization problem in finite groups of lie type[J]. Computer Journal, 2019, 62:1840-1848.
    [15] NYLANDER J A A, RONQUIST F, HUELSENBECK J P, et al. Bayesian phylogenetic analysis of combined data[J]. Systematic Biology, 2004, 53:47-67.
    [16] KURZ S, RAIN O, RJASANOW S. Application of the adaptive cross approximation technique for the coupled BE-FE solution of symmetric electromagnetic problems[J]. Computational Mechanics, 2003, 32:423-429.
    [17] MIZRAJI E. Vector logics:the matrix-vector representation of logical calculus[J]. Fuzzy Sets Syst (Netherlands). 1992, 50:179-185.
    [18] 赵振华. 微量元素地球化学原理[M]. 北京:科学出版社, 2016.
    [19] BORCH T, KRETZSCHMAR R, KAPPLER A, et al. Biogeochemical redox processes and their impact on contaminant dynamics[J]. Environmental Science and Technology, 2010, 44(1):15-23.
    [20] LEVINE D S, HEAD-Gordon M. Energy decomposition analysis of single bonds within Kohn-Sham density functional theory[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(48):12649-12656.
    [21] GRABOWSKI S J. Hydrogen bonds, and sigma-hole and pi-hole bonds-mechanisms protecting doublet and octet electron structures[J]. Physical Chemistry Chemical Physics, 2017, 19:29742-29759.
    [22] BADER R W F, A quantum theory of molecular structure and its applications[J]. Chemical Reviews, 1991, 91:893-928.
    [23] GORHAM E, JANSSENS J A, The distribution and accumulation of chemical elements in five peat cores from the mid-continent to the eastern coast of North America[J]. Wetlands, 2005, 25:259-278.
    [24] BOCANIOV S A, BARTON D R, SCHIFF S L, et al. Impact of tributary DOM and nutrient inputs on the nearshore ecology of a large, oligotrophic lake (Georgian Bay, Lake Huron, Canada)[J]. Aquatic Sciences, 2013, 75(2):321-332.
    [25] STUTES A L, CEBRIAN J, CORCORAN A A. Effects of nutrient enrichment and shading on sediment primary production and metabolism in eutrophic estuaries[J]. Marine Ecology Progress Series, 2006, 312:29-43.
    [26] SHARMA V K, SOHN M. Aquatic arsenic:toxicity, speciation, transformations, and remediation[J]. Environment International, 2009, 35:743-759.
    [27] ZHANG C, YU Z G, ZENG G M, et al. Effects of sediment geochemical properties on heavy metal bioavailability[J]. Environmental International, 2014, 73:270-281.
    [28] COSSI M, BARONE V. Time-dependent density functional theory for molecules in liquid solutions[J]. Journal of Chemical Physics, 2001, 115(10):4708-4717.
    [29] FAYER M D. Dynamics of water interacting with interfaces, molecules, and ions[J]. Accounts of Chemical Research, 2012, 45(1):3-14.
    [30] PEARSON R G. Chemical hardness and density functional theory[J]. Journal of Chemical Sciences, 2005, 117:369-377.
    [31] 李泽敏,孔巧平,韦朝海. 溶气过程原理、技术特征及其水处理工程应用[J]. 化学工业与工程, 2019, 36(2):1-14.
    [32] HU Q Y, KIM D Y, YANG W G, et al. FeO2 and FeOOH under deep lower-mantle conditions and Earth's oxygen-hydrogen cycles[J]. Nature, 2016, 534:241-244.
    [33] 黄源凯, 韦朝海, 吴超飞, 等. 焦化废水污染指标的相关性分析[J]. 环境化学, 2015, 34(9):1661-1670.
    [34] KONG Q P, LI Z M, ZHAO Y S, et al. Investigation of the fate of heavy metals based on process regulation-chemical reaction-phase distribution in an A-O1-H-O2 biological coking wastewater treatment system[J]. Journal of Environmental Management, 2019, 247:234-241.
    [35] ZHU S, WU H Z, WU C F, et al. Structure and function of microbial community involved in a novel full-scale prefix oxic coking wastewater treatment O/H/O system[J]. Water Research, 2019, 164:114963.
    [36] WEI C H, LI Z M, PAN J X, et al. An Oxic-Hydrolytic-Oxic process at the nexus of sludge spatial segmentation, microbial functionality, and pollutants removal in the treatment of coking wastewater[J]. ACS EST Water, 2021, 1:1252-1262.
    [37] 叶国杰, 王一显, 罗培, 等. 水处理高级氧化法活性物种生成机制及其技术特征分析[J]. 环境工程, 2020, 38(2):1-15.
    [38] WANG J L, XU L J. Advanced oxidation processes for wastewater treatment:formation of hydroxyl radical and application[J]. Critical Reviews in Environmental Science and Technology, 2012, 42(3):251-325.
    [39] MA J D, WU H Z, WANG Y X, et al. Material inter-recycling for advanced nitrogen and residual COD removal from bio-treated coking wastewater through autotrophic denitrification[J]. Bioresource Technology, 2019, 289:121616.
    [40] MA J D, WEI J Y, KONG Q P, et al. Synergy between autotrophic denitrification and Anammox driven by FeS in a fluidized bed bioreactor for advanced nitrogen removal[J]. Chemosphere, 2021, 280:130726.
    [41] PAN J X, MA J D, WU H Z, et al. Application of metabolic division of labor in simultaneous removal of nitrogen and thiocyanate from wastewater[J]. Water Research, 2019, 150:216-224.
    [42] MAHJOURI M, ISHAK M B, TORABIAN A, et al. The application of a hybrid model for identifying and ranking indicators for assessing the sustainability of wastewater treatment systems[J]. Sustainable Production and Consumption, 2017, 10:21-37.
    [43] PADILLA-Rivera A, & GVERECA L P. A proposal metric for sustainability evaluations of wastewater treatment systems (SEWATS)[J]. Ecological Indicators, 2019, 103:22-33.
    [44] KAMALI M, COSTA M E, AMINABHAVI T M, et al. Sustainability of treatment technologies for industrial biowastes effluents[J]. Chemical Engineering Journal, 2019, 370:1511-1521.
    [45] KAMALI M, PERSSON K M, COSTA M E, et al. Sustainability criteria for assessing nanotechnology applicability in industrial wastewater treatment:current status and future outlook[J]. Environment International, 2019, 125:261-276.
    [46] KAMALI M, SUHAS D P, COSTA M E, et al. Sustainability considerations in membrane-based technologies for industrial effluents treatment[J]. Chemical Engineering Journal, 2019, 368:474-494.
    [47] QIN Zi, WEI Cong, WEI Tuo, et al. Evolution of biochemical processes in coking wastewater treatment:A combined avaluation of materials and energy efficiences and secondary pollution[J]. Science of The Total Environment, 2021, xx:xxx-xxx.
    [48] 武恒平, 韦朝海, 任源, 等. 焦化废水预处理及其特征污染物的变化分析[J]. 化工进展, 2017, 36(10):3911-3920.
    [49] 赵雅思, 杨兴舟, 叶国杰, 等. 焦化废水处理过程中固相物质的形成及处置方法评价[J]. 环境科学学报, 2020, 40(7):2548-2556.
    [50] 韦朝海, 廖建波, 刘浔, 等. PBDEs的来源特征、环境分布及污染控制[J]. 环境科学学报, 2015, 35(10):1-17.
    [51] ZHAO J L, JIANG Y X, YAN B, et al. Multispecies acute toxicity evaluation of wastewaters from different treatment stages in a coking wastewater-treatment plant[J]. Environmental Toxicology and Chemistry, 2014, 33:1967-1975.
    [52] LU H, HUANG H, YANG W, et al. Elucidating the stimulatory and inhibitory effects of dissolved sulfide on sulfur-oxidizing bacteria (SOB) driven autotrophic denitrification[J]. Water Research, 2018, 133:165-172.
    [53] PIKAAR I, SHARMA K R, HU S, et al. Reducing sewer corrosion through integrated urban water management[J]. Science, 2014, 345(6198):812-814.
    [54] PANG Zijun, LUO Pei, WEI Cong, et al. In-situ growth of Co/Ni bimetallic organic frameworks on carbon spheres with catalytic ozonation performance for removal of bio-treated coking wastewater[J]. Chemosphere, 2021, xx:xxx-xxx.
    [55] ZHOU H, WEI C, ZHANG F, et al. A comprehensive evaluation method for sludge pyrolysis and adsorption process in the treatment of coking wastewater[J]. Journal of Environmental Management, 2019, 235:423-431.
    [56] ZHOU H b, WEI C, ZHANG F, et al. Energy-saving optimization of coking wastewater treated by aerobic bio-treatment integrating two-stage activated carbon adsorption[J]. Journal of Cleaner Production, 2018, 175:467-476.
    [57] PENA-Guzman C, ULLOA-Sanchez S, MORA K, et. al. Emerging pollutants in the urban water cycle in Latin America:A review of the current literature[J]. Journal of Environmental Management, 2019, (237):408-423.
    [58] PLAPPALLY A K, LIENHARD J H. Energy requirements for water production, treatment, end use, reclamation, and disposal[J]. Renewable & Sustainable Energy Reviews, 2012, 16(7):4818-4848.
  • 加载中
计量
  • 文章访问数:  402
  • HTML全文浏览量:  48
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 网络出版日期:  2022-01-26

目录

    /

    返回文章
    返回