中文核心期刊
CSCD来源期刊(核心库)
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型生物质燃烧排放酚类有机物的大气液相氧化动力学

雷若媛 刘雨 虞婉宁 缪静秋 盖鑫磊

雷若媛, 刘雨, 虞婉宁, 缪静秋, 盖鑫磊. 典型生物质燃烧排放酚类有机物的大气液相氧化动力学[J]. 环境工程, 2022, 40(9): 54-62,172. doi: 10.13205/j.hjgc.202209007
引用本文: 雷若媛, 刘雨, 虞婉宁, 缪静秋, 盖鑫磊. 典型生物质燃烧排放酚类有机物的大气液相氧化动力学[J]. 环境工程, 2022, 40(9): 54-62,172. doi: 10.13205/j.hjgc.202209007
LEI Ruo-yuan, LIU Yu, YU Wan-ning, MOU Jing-qiu, GAI Xin-lei. KINETICS OF ATMOSPHERIC AQUEOUS-PHASE OXIDATION OF REPRESENTATIVE PHENOLIC COMPOUNDS EMITTED FROM BIOMASS BURNING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 54-62,172. doi: 10.13205/j.hjgc.202209007
Citation: LEI Ruo-yuan, LIU Yu, YU Wan-ning, MOU Jing-qiu, GAI Xin-lei. KINETICS OF ATMOSPHERIC AQUEOUS-PHASE OXIDATION OF REPRESENTATIVE PHENOLIC COMPOUNDS EMITTED FROM BIOMASS BURNING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 54-62,172. doi: 10.13205/j.hjgc.202209007

典型生物质燃烧排放酚类有机物的大气液相氧化动力学

doi: 10.13205/j.hjgc.202209007
基金项目: 

国家自然科学基金项目(21976093,42021004)

详细信息
    作者简介:

    雷若媛(1999-),女,博士,主要研究方向为大气二次有机气溶胶的液相氧化动力学、生成机制及其毒理效应。ruoyuan_lei@163.com

    通讯作者:

    盖鑫磊(1982-),男,教授,主要研究方向为大气环境化学与大气污染防治。caxinra@163.com

KINETICS OF ATMOSPHERIC AQUEOUS-PHASE OXIDATION OF REPRESENTATIVE PHENOLIC COMPOUNDS EMITTED FROM BIOMASS BURNING

  • 摘要: 生物质燃烧排放有机物是大气二次有机气溶胶(SOA)的重要前体物,但相关反应参数仍较为匮乏。选择其中4种代表性物质,间苯二酚(RES)、4-乙基苯酚(4-EP)、丁香酚(Eug)和2,4,6-三甲基苯酚(Trmp),利用相对速率法测定了其与·OH在液相(云雾条件)中的二级反应动力学参数,并估算了其在实际大气条件下的液相反应寿命。在pH=5.4,T=298 K条件下,测定以上4种前体物液相氧化的二级动力学常数(K)分别为(7.68±0.04)×109,(18.12±0.56)×109,(23.11±0.60)×109,(16.90±0.58)×109 L/(mol·s),所得到的K值不确定性为3.5%~12%。此外,还测定了体系在T=293,288 K时的K值,发现288 K时的K值比298 K时的低了22%~38%,说明温度对于酚类液相反应的双分子速率常数有一定影响。研究还发现,反应过程中前体物浓度为初始值1/2时,pH降低,说明反应过程中可能生成一定量的有机酸;这些化合物在不同情境下使用CAPRAM 3.0多相机制计算得到的大气寿命在数十秒到数十小时之间,进一步说明生物质燃烧排放酚类化合物对SOA的生成贡献值得重视。
  • [1] ZHAO Y,HENNIGAN C J,MAY A A,et al.Intermediate-volatility organic compounds:a large source of secondary organic aerosol[J].Environmental Science & Technology,2014,48(23):13743-13750.
    [2] ERVENS B,TURPIN B J,WEBER R J.Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA):a review of laboratory,field and model studies[J].Atmospheric Chemistry and Physics,2011,11(21):11069-11102.
    [3] YU L,SMITH J,LASKIN A,et al.Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical[J].Atmospheric Chemistry and Physics,2014,14(24):13801-13816.
    [4] YE Z L,QU Z X,MA S S,et al.A comprehensive investigation of aqueous-phase photochemical oxidation of 4-ethylphenol[J].Science of the Total Environment,2019,685(OCT.1):976-985.
    [5] SMITH J D,KINNEY H,ANASTASIO C.Aqueous benzene-diols react with an organic triplet excited state and hydroxyl radical to form secondary organic aerosol[J].Physical Chemistry Chemical Physics,2015,17(15):10227-10237.
    [6] YE Z L,ZHUANG Y,CHEN Y,et al.Aqueous-phase oxidation of three phenolic compounds by hydroxyl radical:insight into secondary organic aerosol formation yields,mechanisms,products and optical properties[J].Atmospheric Environment,2020,223:117240.
    [7] LIU Y,LU J C,CHEN Y F,et al.Aqueous-phase production of secondary organic aerosols from oxidation of dibenzothiophene (DBT)[J].Atmosphere,2020,11(2):151.
    [8] ALVES C A,VICENTE A,MONTEIRO C,et al.Emission of trace gases and organic components in smoke particles from a wildfire in a mixed-evergreen forest in Portugal[J].Science of the Total Environment,2011,409(8):1466-1475.
    [9] HATCH L E,LUO W,PANKOW J F,et al.Identification and quantification of gaseous organic compounds emitted from biomass burning using two-dimensional gas chromatography-time-of-flight mass spectrometry[J].Atmospheric Chemistry and Physics,2015,15(4):1865-1899.
    [10] ROMONOSKY D E,LASKIN A,LASKIN J,et al.High-resolution mass spectrometry and molecular characterization of aqueous photochemistry products of common types of secondary organic aerosols[J].The Journal of Physical Chemistry A,2015,119(11):2594-2606.
    [11] LI G H,ZHANG Q Q,ZHUANG W H,et al.Divergent synthesis of oxacyclophenylpropanoids from biomass-derived eugenol[J].Tetrahedron Letters,2019,60(22):1501-1504.
    [12] SCHAUER J J,KLEEMAN M J,CASS G R,et al.Measurement of emissions from air pollution sources.3.C1-C29 organic compounds from fireplace combustion of wood[J].Environmental Science & Technology,2001,35(9):1716-1728.
    [13] ZHANG H X,YANG B,WANG Y F,et al.Gas-phase reactions of methoxyphenols with NO3 radicals:kinetics,products,and mechanisms[J].The Journal of Physical Chemistry A,2016,120(8):1213-1221.
    [14] BEJAN I,SCHÜRMANN A,BARNES I,et al.Kinetics of the gas-phase reactions of OH radicals with a series of trimethylphenols[J].International Journal of Chemical Kinetics,2012,44(2):117-124.
    [15] HENNIGAN C J,BERGIN M H,DIBB J E,et al.Enhanced secondary organic aerosol formation due to water uptake by fine particles[J].Geophysical Research Letters,2008,35(18):L18801.
    [16] CHEN H,GE X L,YE Z L.Aqueous-phase secondary organic aerosol formation via reactions with organic triplet excited states:a short review[J].Current Pollution Reports,2018,4(1):8-12.
    [17] CHEN Y T,LI N W,LI X D,et al.Secondary organic aerosol formation from 3C*-initiated oxidation of 4-ethylguaiacol in atmospheric aqueous-phase[J].Science of the Total Environment,2020,723:137953.
    [18] HENNIGAN C J,BERGIN M H,RUSSELL A G,et al.Gas/particle partitioning of water-soluble organic aerosol in Atlanta[J].Atmospheric Chemistry and Physics,2009,9(11):3613-3628.
    [19] ANASTASIO C,FAUST B C,ALLEN J M.Aqueous phase photochemical formation of hydrogen peroxide in authentic cloud waters[J].Journal of Geophysical Research,1994,99:8231-8248.
    [20] HERRMANN H,TILGNER A,BARZAGHI P,et al.Towards a more detailed description of tropospheric aqueous phase organic chemistry:CAPRAM 3.0[J].Atmospheric Environment,2005,39(23/24):4351-4363.
    [21] LERICHE M,VOISIN D,CHAUMERLIAC N,et al.A model for tropospheric multiphase chemistry:application to one cloudy event during the CIME experiment[J].Atmospheric Environment,2000,34(29/30):5015-5036.
    [22] TILGNER A,HERRMANN H.Radical-driven carbonyl-to-acid conversion and acid degradation in tropospheric aqueous systems studied by CAPRAM[J].Atmospheric Environment,2010,44(40):5415-5422.
    [23] DEGUILLAUME L,LERICHE M,MONOD A,et al.The role of transition metal ions on HOx radicals in clouds:a numerical evaluation of its impact on multiphase chemistry[J].Atmospheric Chemistry & Physics,2004,4(1):95-110.
    [24] RICHARDS-HENDERSON N K,HANSEL A K,VALSARAJ K T,et al.Aqueous oxidation of green leaf volatiles by hydroxyl radical as a source of SOA:kinetics and SOA yields[J].Atmospheric Environment,2014,95:105-112.
    [25] WITKOWSKI B,GIERCZAK T.cis-Pinonic acid oxidation by hydroxyl radicals in the aqueous phase under acidic and basic conditions:kinetics and mechanism[J].Environmental Science & Technology,2017,51(17):9765-9773.
    [26] CHU L,ANASTASIO C.Formation of hydroxyl radical from the photolysis of frozen hydrogen peroxide[J].Journal of Physical Chemistry A,2005,109(28):6264-6271.
    [27] ANASTASIO C,MCGREGOR K G.Chemistry of fog waters in California’s Central Valley:1.In situ photoformation of hydroxyl radical and singlet molecular oxygen[J].Atmospheric Environment,2001,35(6):1079-1089.
    [28] YU L,SMITH J,LASKIN A,et al.Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical[J].Atmospheric Chemistry and Physics,2014,14(24):13801-13816.
    [29] ANASTASIO C,FAUST B C,ALLEN J M.Aqueous phase photochemical formation of hydrogen peroxide in authentic cloud waters[J].Journal of Geophysical Research Atmospheres,1994,99(D4):8231-8248.
    [30] SCHONE L,SCHINDELKA J,SZEREMETA E,et al.Atmospheric aqueous phase radical chemistry of the isoprene oxidation products methacrolein,methyl vinyl ketone,methacrylic acid and acrylic acid--kinetics and product studies[J].Physical Chemistry Chemical Physics:PCCP,2014,16(13):6257-6272.
    [31] OTTO T,STIEGER B,METTKE P,et al.Tropospheric aqueous-phase oxidation of isoprene-derived dihydroxycarbonyl compounds[J].The Journal of Physical Chemistry A,2017,121(34):6460-6470.
    [32] WITKOWSKI B,AL-SHARAFI M,GIERCZAK T.Kinetics and products of the aqueous-phase oxidation of β-caryophyllonic acid by hydroxyl radicals[J].Atmospheric Environment,2019,213:231-238.
    [33] BUXTON G V,GREENSTOCK C L,HELMAN W P,et al.Critical Review of rate constants for reactions of hydrated electrons,hydrogen atoms and hydroxyl radicals (·OH/·O- in aqueous solution[J].Journal of Physical and Chemical Reference Data,1988,17(2):513-886.
    [34] HERRMANN H,HOFFMANN D,SCHAEFER T,et al.Tropospheric aqueous-phase free-radical chemistry:radical sources,spectra,reaction kinetics and prediction tools[J].ChemPhysChem,2010,11(18):3796-3822.
    [35] FANG T,LAKEY P S J,RIVERA-RIOS J C,et al.Aqueous-phase decomposition of isoprene hydroxy hydroperoxide and hydroxyl radical formation by fenton-like reactions with iron ions[J].The Journal of Physical Chemistry A,2020,124(25):5230-5236.
    [36] WANG Y,ZHAO J,LIU H H,et al.Photooxidation of methacrolein in Fe(Ⅲ)-oxalate aqueous system and its atmospheric implication[J].Advances in Atmospheric Sciences 2021,38(7):1252-1263.
    [37] LIU Y,HADDAD I E,SCARFOGLIERO M,et al.In-cloud processes of methacrolein under simulated conditions-Part 1:aqueous phase photooxidation[J].Atmospheric Chemistry and Physics,2009,9:5093-5105.
    [38] SARANG K,OTTO T,RUDZINSKI K,et al.Reaction kinetics of green leaf volatiles with sulfate,hydroxyl,and nitrate radicals in tropospheric aqueous phase[J].Environmental Science & Technology,2021,55(20):13666-13676.
    [39] ABICHANDANI B C T,JATKAR S K K.Dissociation constants of ortho-,meta and para-hydroxy benzoic acids,gallic acid,catechol,resorcinol,hydroquinone,pyrogallol and phloroglucinol[J].Journal of the Indian Institute of Science,1938,21:417.
    [40] HANAI T,KOIZUMI K,KINOSHITA T,et al.Prediction of pKa values of phenolic and nitrogen-containing compounds by computational chemical analysis compared to those measured by liquid chromatography[J].Journal of Chromatography A,1997,762(1/2):55-61.
    [41] HANAI T.Simulation of chromatography of phenolic compounds with a computational chemical method[J].Journal of Chromatography A,2004,1027(1/2):279-287.
    [42] LIU H X,YANG G L,WANG D X,et al.Determination of dissociation constants of complicated compounds by capillary zone electrophoresis[J].Chinese Journal of Chemistry,2001,19(7):675-680.
    [43] SHI G L,XU J,PENG X,et al.pH of aerosols in a polluted atmosphere:source contributions to highly acidic aerosol[J].Environmental Science & Technology,2017,51(8):4289-4296.
    [44] SONG S J,GAO M,XU W Q,et al.Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models[J].Atmospheric Chemistry and Physics,2018,18(10):7423-7438.
    [45] SMITH J D,KINNEY H,ANASTASIO C.Aqueous benzene-diols react with an organic triplet excited state and hydroxyl radical to form secondary organic aerosol[J].Physical Chemistry Chemical Physics,2015,17(15):10227-10237.
    [46] HEATH A A,EHRENHAUSER F S,VALSARAJ K T.Effects of temperature,oxygen level,ionic strength,and pH on the reaction of benzene with hydroxyl radicals in aqueous atmospheric systems[J].Journal of Environmental Chemical Engineering,2013,1(4):822-830.
    [47] LAND E,EBERT M.Pulse radiolysis studies of aqueous phenol.Water elimination from dihydroxycyclohexadienyl radicals to form phenoxyl[J].Transactions of the Faraday Society,1967,63:1181-1190.
    [48] ABELLAR K A,COPE J D,NGUYEN T B.Second-order kinetic rate coefficients for the aqueous-phase hydroxyl radical (OH) oxidation of isoprene-derived secondary organic aerosol compounds at 298 K[J].Environmental Science & Technology,2021,55(20):13728-13736.
    [49] OTTO T,SCHAEFER T,HERRMANN H.Aqueous-phase oxidation of terpene-derived acids by atmospherically relevant radicals[J].The Journal of Physical Chemistry A,2018,122(47):9233-9241.
    [50] HERRMANN H,SCHAEFER T,TILGNER A,et al.Tropospheric aqueous-phase chemistry:kinetics,mechanisms,and its coupling to a changing gas phase[J].Chemical Reviews,2015,115(10):4259-4334.
    [51] PERCIVAL C,MCGILLEN M.Overview of Structure-Activity Relationship Methods for Predicting Gas-Phase Rate Coefficients[M].Springer Netherlands,2008:47-59.
    [52] FINEWAX Z,de GOUW J A,ZIEMANN P J.Products and secondary organic aerosol yields from the OH and NO3 radical-initiated oxidation of resorcinol[J].ACS Earth and Space Chemistry,2019,3(7):1248-1259.
  • 加载中
计量
  • 文章访问数:  199
  • HTML全文浏览量:  24
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-17
  • 网络出版日期:  2022-11-09

目录

    /

    返回文章
    返回