TEMPORAL VARIATION TRAITS AND ENVIRONMENTAL FACTORS OF COMMUNITY STRUCTURE OF EPIPHYTES ON CERATOPHYLLUM DEMERSUM IN THE BAIYANGDIAN LAKE
-
摘要: 湖泊沉水植物表面的附生藻类参与生态系统生物地球化学循环,对水环境的变化响应迅速,附生藻类爆发会限制沉水植物的光合作用并导致其退化。针对雄安新区白洋淀的优势沉水植物金鱼藻(Ceratophyllum demersum)附生藻类群落展开研究,进行了金鱼藻休眠期和生长期的附生藻类调查及水体理化指标监测,分析了附生藻类群落结构特征及其与环境因素的相关关系,明确了金鱼藻休眠期和生长期附生藻类的群落特征及各藻门的关键环境影响因素。结果表明:在白洋淀沉水植物生长期和休眠期,硅藻的多样性和物种丰富度均最高,各藻门附着紧密程度顺序为硅藻门(Bacillariophyta)>绿藻门(Chlorophyta)>蓝藻门(Cyanophyta)>金藻门(Chrysophyta)。N/P对各藻门均存在显著影响,其中硅藻门卵形藻属(Cocconeis)、针杆藻属(Synedra)和脆杆藻属(Fragilaria)对N/P的适宜生态幅较宽,是当前白洋淀的全年优势物种(属);小环藻属(Cyclotella)、直链藻属(Melosira)、短缝藻属(Eunotia)、舟形藻属(Navicula)和异极藻属(Gomphonema)仅在休眠期高N/P条件下是优势种,更适宜在高N/P环境生存,生长期易受低N/P条件下的氮限制。溶解氧和总磷分别显著影响生长期和休眠期蓝藻丰度。N/P与蓝藻之间存在正反馈调节关系,且能显著影响绿藻的定植。为防止附生藻类爆发导致沉水植物退化,建议在白洋淀沉水植物生长期控制氮输入并增加补水,抑制绿藻和蓝藻的繁殖及其在植物表面的附着生长;在沉水植物休眠期控制磷输入,以预防硅藻爆发,保护沉水植物生长。Abstract: Epiphytes on the surface of submerged plants participate in the biogeochemical cycle of the ecosystem and respond quickly to the changes of water environment. Epiphytes blooms will limit the photosynthesis of submerged plants and further lead to their degradation. To clarify the traits of epiphytes community structure and its correlation with environmental factors, this study investigated the epiphyte community in the dormancy and growth period of Ceratophyllum demersum, the dominant submerged plant in the Baiyangdian Lake, Xiong’an New Area, and monitored physical and chemical environmental factors of the water column. Furthermore, key environmental factors for each phylum of epiphytes were identified. Results showed that the diversity and species richness of Bacillariophyta in the Baiyangdian Lake were highest both in the growing and dormancy periods. The epiphytes attachment sort was Bacillariophyta>Chlorophyta>Cyanobacteria>Chrysophyta. The ratio of N/P had a significant effect on all phylum of epiphytes. Cocconeis, Synedra and Fragilaria were annual dominant species (genera), and their ecological amplitude of N/P ratio was relatively wider. Cyclotella, Melosira, Eunotia, Navicula and Gomphonema became the dominant species only in the dormancy period of high N/P ratio. It demonstrated that they were more suitable for living in an environment of high N/P ratio, and more vulnerable to a nitrogen-limited environment, i.e., the growing period with low N/P ratio. Dissolved oxygen and total phosphorus significantly affected the abundance of Cyanophyta during growth and dormancy periods, respectively. A positive feedback loop existed between N/P ratio and Cyanophyta, and the colonization of Chlorophyta was significantly affected by N/P ratio. To prevent the degradation of submerged plants caused by epiphytes bloom, controlling nitrogen input and increasing water supply were suggested to inhibit the reproduction and colonization of Chlorophyta and Cyanophyta during the growing period of submerged plants in Baiyangdian Lake. By contrast, during the dormancy period, controlling phosphorus input and decreasing water supply is necessary to prevent Bacillariophyta bloom and protect submerged plant growth.
-
Key words:
- submerged plants /
- epiphytes /
- community structure /
- the Baiyangdian Lake /
- environmental factors
-
[1] SAND-JENSEN K, REVSBECH N P. Photosynthesis and light adaptation in epiphyte-macrophyte associations measured by oxygen microelectrodes[J]. Limnology and Oceanography, 1987, 32(2): 452-457. [2] 董彬, 陆全平, 王国祥, 等. 菹草(Potamogeton crispus)附着物对水体氮、磷负荷的响应[J]. 湖泊科学, 2013, 25(3): 359-365. [3] MIN F L, ZUO J C, ZHANG Y, et al. The biomass and physiological responses of Vallisneria natans (lour.) hara to epiphytic algae and different nitrate-N concentrations in the water column[J]. Water, 2017, 9(12):863. [4] 贾惠雁, 陈永华, 陈明利, 等. 5种水生植物对铜绿微囊藻的抑制与生理影响研究[J]. 农业现代化研究, 2019, 40(6): 1056-1064. [5] 张晶, 刘存歧. 金鱼藻附生生物初级生产力的研究[J]. 环境科学与技术, 2015, 38(9): 24-29. [6] 宋玉芝, 杨旻, 杨美玖, 等. 氨氮浓度对附植藻类在菹草上定植及演替的影响[J]. 农业环境科学学报, 2014, 33(2): 375-382. [7] RODUSKY A J, STEINMAN A D, EAST T L, et al. Periphyton nutrient limitation and other potential growth-controlling factors in Lake Okeechobee, U.S.A.[J]. Hydrobiologia, 2001, 448(1/2/3): 27-39. [8] DODDS W K. The role of periphyton in phosphorus retention in shallow freshwater aquatic systems[J]. Journal of Phycology, 2003, 39(5): 840-849. [9] DANILOV R A, EKELUND N G A. The use of epiphyton and epilithon data as a base for calculating ecological indices in monitoring of eutrophication in lakes in central Sweden[J]. Science of the Total Environment, 2000, 248(1): 63-70. [10] HAN Z, CUI B S. Performance of macrophyte indicators to eutrophication pressure in ponds[J]. Ecological Engineering, 2016, 8-19. [11] LI S H, SUN T, YANG W, et al. Interspecific relationships between submerged and emergent aquatic plants along a nitrogen gradient in a mesocosm experiment[J]. Ecological Indicators, 2021, 133:108360. [12] 马牧源, 崔丽娟, 张曼胤, 等. 白洋淀附生藻类的初级生产力及其与水质的关系[J]. 生态学报, 2018, 38(2): 443-456. [13] 张晶. 沉水植物附生藻类对不同营养盐浓度的响应[D]. 保定:河北大学, 2014. [14] 方慷. 白洋淀三大典型水体附生藻类群落结构研究[D]. 保定:河北大学, 2014. [15] 李建, 尹炜, 贾海燕, 等. 汉江中下游硅藻水华研究进展与展望[J]. 水生态学杂志, 2020, 41(5): 136-144. [16] 周卢茜, 裘钱玲琳, 唐剑锋, 等. 城市湖泊春季绿藻水华特征及其影响因素:以宁波月湖为例[J]. 湖泊科学, 2019, 31(4): 1023-1034. [17] 侯秀丽, 苑春刚, 李学平, 等. 滇池氮磷浓度变化对蓝、绿、硅藻年际变化的影响[J]. 水生态学杂志, 2018, 39(1): 16-22. [18] 马健荣, 邓建明, 秦伯强, 等. 湖泊蓝藻水华发生机理研究进展[J]. 生态学报, 2013, 33(10): 3020-3030. [19] 王婷婷, 崔保山, 刘佩佩, 等. 白洋淀漂浮植物对挺水植物和沉水植物分布的影响[J]. 湿地科学, 2013, 11(2): 266-270. [20] ZHANG L, LIU B X, GE F J, et al. Interspecific competition for nutrients between submerged macrophytes (Vallisneria natans, Ceratophyllum demersum) and filamentous green algae (Cladophora oligoclona) in a co-culture system[J]. Polish Journal of Environmental Studies, 2019, 28(3): 1483-1494. [21] STIERS I, NJAMBUYA J, TRIEST L. Competitive abilities of invasive Lagarosiphon major and native Ceratophyllum demersum in monocultures and mixed cultures in relation to experimental sediment dredging[J]. Aquatic Botany, 2011, 95(2): 161-166. [22] 陈纯, 李思嘉, 胡韧, 等. 四种浮游植物生物量计算方法的比较分析[J]. 湖泊科学, 2013, 25(6): 927-935. [23] SHANNON C E, WEAVER W. The mathematical theory of communication[M]. University of Illinois Press, 1949. [24] MARGALEF R. Diversidad de especies en las comunidades naturales[J]. Publicaciones del Instituto de Biologia Aplicada, 1951, 6(1): 59-72. [25] 苏胜齐, 沈盎绿, 姚维志. 菹草着生藻类的群落结构与数量特征初步研究[J]. 西南农业大学学报, 2002, 24(3): 255-258. [26] ÖTERLER B. Community structure, temporal and spatial changes of epiphytic algae on three different submerged macrophytes in a shallow lake[J]. Polish Journal of Environmental Studies, 2017, 26(5): 2147-2158. [27] TOPOROWSKA M, RECHULICZ J, ADAMCZUK M, et al. The role of abiotic and biotic environmental factors in shaping epiphyton on common reed in shallow, hydrologically transformed, temperate lakes[J]. Knowledge & Management of Aquatic Ecosystems, 2018, 419:18. [28] TOPOROWSKA M, PAWLIK-SKOWRON'SKA B, WOJTAL A. Epiphytic algae on Stratiotes aloides L., Potamogeton lucens L., Ceratophyllum demersum L. and Chara spp. in a macrophyte-dominated lake[J]. Oceanological and Hydrobiological Studies, 2008, 37(2): 51-63. [29] 宋旭, 林陶, 夏品华, 等. 沉水植物附植生物膜藻类组成及重金属累积特征[J]. 湖泊科学, 2019, 31(5): 1268-1278. [30] 刘凯辉, 张松贺, 吕小央, 等. 南京花神湖3种沉水植物表面附着微生物群落特征[J]. 湖泊科学, 2015, 27(1): 103-112. [31] 乔金亮. 华北河湖生态补水超预期[N]. 经济日报, 2020-12-3. [32] KALFF J. 湖沼学: 内陆水生态系统[M]. 古滨河, 刘正文, 李宽意等译. 北京: 高等教育出版社, 2011. [33] KIEDRZYNSKA E, WAGNER I, ZALEWSKI M. Quantification of phosphorus retention efficiency by floodplain vegetation and a management strategy for a eutrophic reservoir restoration[J]. Ecological Engineering, 2008, 33(1): 15-25. [34] TIAN Z Q, ZHENG B H, LIU M Z, et al. Phragmites australis and Typha orientalis in removal of pollutant in Taihu Lake, China[J]. Journal of Environmental Sciences, 2009, 21(4): 440-446. [35] 安强, 於阳, 黄源生, 等. 水动力条件对三峡库区次级支流优势藻种生长的影响[J]. 水资源研究, 2015, 4(6): 530-536. [36] 王忠全, 程玲, 孙春晓, 等. 广利港夏季硅藻多样性指数与氮、磷营养盐组成的关系[J]. 广西科学, 2021, 28(2): 119-124. [37] 黄亚男, 纪道斌, 龙良红, 等. 三峡库区典型支流春季特征及其水华优势种差异分析[J]. 长江流域资源与环境, 2017, 26(3): 461-470. [38] JONES J I, YOUNG J, EATON J W, et al. The influence of nutrient loading, dissolved inorganic carbon and higher trophic levels on the interaction between submerged plants and periphyton[J]. Journal of Ecology, 2002, 90: 12-24. [39] LIBORIUSSEN L, JEPPESEN E. Temporal dynamics in epipelic, pelagic and epiphytic algal production in a clear and a turbid shallow lake[J]. Freshwater Biology, 2003, 48(3): 418-431. [40] 秦伯强, 宋玉芝, 高光. 附着生物在浅水富营养化湖泊藻-草型生态系统转化过程中的作用[J]. 中国科学C辑, 2006, 36(3): 283-288. [41] JENSEN J P, JEPPESEN E, OLRIK K, et al. Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow danish lakes[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1994, 51(8): 1692-1699. [42] SOMMER U, GLIWICZ Z M, LAMPERT W, et al. The peg-model of seasonal succession of planktonic events in fresh waters[J]. Archiv Fur Hydrobiologie, 1986, 106(4): 433-471. [43] NALEWAJKO C, MURPHY T P. Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan: an experimental approach[J]. Limnology, 2001,2(1): 245-248. [44] JONES I D, ELLIOTT J A. Modelling the effects of changing retention time on abundance and composition of phytoplankton species in a small lake[J]. Freshwater Biology, 2007, 52(6): 988-997.
点击查看大图
计量
- 文章访问数: 258
- HTML全文浏览量: 26
- PDF下载量: 6
- 被引次数: 0