中文核心期刊
CSCD来源期刊(核心库)
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

饮用水中抗生素抗性基因分布及暴露风险研究进展

曾光曙 周振超 林彦含 葛子冶 林泽俊 帅馨怡 周津羽 陈红

曾光曙, 周振超, 林彦含, 葛子冶, 林泽俊, 帅馨怡, 周津羽, 陈红. 饮用水中抗生素抗性基因分布及暴露风险研究进展[J]. 环境工程, 2023, 41(9): 114-123. doi: 10.13205/j.hjgc.202309014
引用本文: 曾光曙, 周振超, 林彦含, 葛子冶, 林泽俊, 帅馨怡, 周津羽, 陈红. 饮用水中抗生素抗性基因分布及暴露风险研究进展[J]. 环境工程, 2023, 41(9): 114-123. doi: 10.13205/j.hjgc.202309014
ZENG Guangshu, ZHOU Zhenchao, LIN Yanhan, GE Ziye, LIN Zejun, SHUAI Xinyi, ZHOU Jinyu, CHEN Hong. DISTRIBUTION OF ANTIBIOTIC RESISTANCE GENES AND EXPOSURE RISK IN DRINKING WATER: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 114-123. doi: 10.13205/j.hjgc.202309014
Citation: ZENG Guangshu, ZHOU Zhenchao, LIN Yanhan, GE Ziye, LIN Zejun, SHUAI Xinyi, ZHOU Jinyu, CHEN Hong. DISTRIBUTION OF ANTIBIOTIC RESISTANCE GENES AND EXPOSURE RISK IN DRINKING WATER: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 114-123. doi: 10.13205/j.hjgc.202309014

饮用水中抗生素抗性基因分布及暴露风险研究进展

doi: 10.13205/j.hjgc.202309014
基金项目: 

中央高校基本科研业务费专项资金(226-2023-00117);国家自然科学基金项目(52270201)

详细信息
    作者简介:

    曾光曙(2000-),男,硕士研究生,主要研究方向为环境抗生素耐药。22214054@zju.edu.cn

    通讯作者:

    陈红(1969-),女,教授,主要研究方向为新污染物控制技术、环境微生物耐药及风险。chen_hong@zju.edu.cn

DISTRIBUTION OF ANTIBIOTIC RESISTANCE GENES AND EXPOSURE RISK IN DRINKING WATER: A REVIEW

  • 摘要: 抗生素耐药性的传播已成为全球性的公共健康问题,饮用水作为抗生素抗性基因(antibiotics resistance genes,ARGs)向人体迁移传播的重要途径,其携带的抗性基因及潜在暴露风险引起了广泛关注。基于已发表的饮用水ARGs相关研究,分析了全球范围饮用水中ARGs的分布及其影响因素,探究了适用于表征饮用水中ARGs人群暴露剂量及暴露风险的评估方法,并探讨了当前常规饮用水处理技术在控制ARGs方面的作用及局限性。未来的研究可从传播性、人类致病性等多维度对饮用水抗生素耐药风险进行系统性评估,针对ARGs去除需开发新型水处理技术对其进行强化处理。
  • [1] PRUDEN A, PEI R T, STORTEBOOM H, et al. Antibiotic resistance genes as emerging contaminants:studies in northern Colorado[J]. Environmental Science & Technology, 2006, 40(23):7445-7450.
    [2] DODD M C. Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment[J]. Journal of Environmental Monitoring, 2012, 14(7):1754-1771.
    [3] JIA S Y, WU J L, YE L, et al. Metagenomic assembly provides a deep insight into the antibiotic resistome alteration induced by drinking water chlorination and its correlations with bacterial host changes[J]. Journal of Hazardous Materials, 2019, 379:120841.
    [4] FANG H, WANG H F, CAI L, et al. Prevalence of antibiotic resistance genes and bacterial pathogens in long-term manured greenhouse soils as revealed by metagenomic survey[J]. Environmental Science & Technology, 2015, 49(2):1095-1104.
    [5] JIANG H Y, ZHOU R J, ZHANG M D, et al. Exploring the differences of antibiotic resistance genes profiles between river surface water and sediments using metagenomic approach[J]. Ecotoxicology and Environmental Safety, 2018, 161:64-69.
    [6] ZHANG G D, LU S Y, WANG Y Q, et al. Occurrence of antibiotics and antibiotic resistance genes and their correlations in lower Yangtze River, China[J]. Environmental Pollution, 2020, 257(C):113365.
    [7] WANG S, MA X X, LIU Y L, et al. Fate of antibiotics, antibiotic-resistant bacteria, and cell-free antibiotic-resistant genes in full-scale membrane bioreactor wastewater treatment plants[J]. Bioresource Technology, 2020, 302:8.
    [8] WU D L, ZHANG M, HE L X, et al. Contamination profile of antibiotic resistance genes in ground water in comparison with surface water[J]. Science of the Total Environment, 2020, 715(C):136975.
    [9] WAN K, LIN W F, ZHU S, et al. Biofiltration and disinfection codetermine the bacterial antibiotic resistome in drinking water:a review and meta-analysis[J]. Frontiers of Environmental Science & Engineering, 2020, 14(1):10.
    [10] HERNANDO-AMADO S, COQUET T M, BAQUERO F, et al. Defining and combating antibiotic resistance from One Health and Global Health perspectives[J]. Nature Microbiology, 2019, 4(9):1432-1442.
    [11] BALCAZAR J L, SUBIRATS J, BORREGO C M. The role of biofilms as environmental reservoirs of antibiotic resistance[J]. Frontiers in Microbiology, 2015, 6:1216-1216.
    [12] SHAO S C, HU Y Y, CHENG J H, et al. Research progress on distribution, migration, transformation of antibiotics and antibiotic resistance genes (ARGs) in aquatic environment[J]. Critical Reviews in Biotechnology, 2018, 38(8):1195-1208.
    [13] CHEN J P, LU W Y, ZHANG J P, et al. Prevalence of antibiotic resistance genes in drinking water and biofilms:the correlation with the microbial community and opportunistic pathogens[J]. Chemosphere, 2020, 259:127483.
    [14] TSVETANOVA Z G, DIMITROV D N, NAJDENSKI H M. Prevalence of antimicrobial resistance in a Bulgarian drinking water supply system[J]. Water Supply, 2022, 22(9):7059-7071.
    [15] XI C W, ZHANG Y L, MARRS C F, et al. Prevalence of antibiotic resistance in drinking water treatment and distribution systems[J]. Applied and Environmental Microbiology, 2009, 75(17):5714-5718.
    [16] HE L Y, YING G G, LIU Y S, et al. Discharge of swine wastes risks water quality and food safety:antibiotics and antibiotic resistance genes, from swine sources to the receiving environments[J]. Environment International, 2016, 92/93:210-219.
    [17] HUANG H W, ZENG S Y, DONG X, et al. Diverse and abundant antibiotics and antibiotic resistance genes in an urban water system[J]. Journal of Environmental Management, 2019, 231:494-503.
    [18] HU Y R, JIANG L, ZHANG T Y, et al. Occurrence and removal of sulfonamide antibiotics and antibiotic resistance genes in conventional and advanced drinking water treatment processes[J]. Journal of Hazardous Materials, 2018, 360:364-372.
    [19] XU L K, OUYANG W Y, QIAN Y Y, et al. High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems[J]. Environmental Pollution, 2016, 213:119-126.
    [20] SU H C, LIU Y S, PAN C G, et al. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system:from drinking water source to tap water[J]. Science of the Total Environment, 2018, 616:453-461.
    [21] HAO H, SHI D Y, YANG D, et al. Profiling of intracellular and extracellular antibiotic resistance genes in tap water[J]. Journal of Hazardous Materials, 2019, 365:340-345.
    [22] SZEKERES E, CHIRIAC C M, BARICZ A, et al. Investigating antibiotics, antibiotic resistance genes, and microbial contaminants in groundwater in relation to the proximity of urban areas[J]. Environmental Pollution, 2018, 236:734-744.
    [23] DESTIANI R, TEMPLETON M R. The antibiotic resistance of heterotrophic bacteria in tap waters in London[J]. Water Supply, 2019, 19(1):179-190.
    [24] YU Q L, FENG T S, YANG J W, et al. Seasonal distribution of antibiotic resistance genes in the Yellow River water and tap water, and their potential transmission from water to human[J]. Environmental Pollution, 2022, 292(Part A):118304.
    [25] MA L P, LI B, JIANG X T, et al. Catalogue of antibiotic resistome and host-tracking in drinking water deciphered by a large scale survey[J]. Microbiome, 2017, 5(1):154.
    [26] ZHANG K, XIN R, ZHAO Z, et al. Antibiotic resistance genes in drinking water of China:occurrence, distribution and influencing factors[J]. Ecotoxicology and Environmental Safety, 2020, 188:109837.
    [27] MUNAVALLI G R, KUMAR S M M. Water quality parameter estimation in steady-state distribution system[J]. Journal of Water Resources Planning and Management-Asce, 2003, 129(2):124-134.
    [28] STANGE C, SIDHU J P S, TOZE S, et al. Comparative removal of antibiotic resistance genes during chlorination, ozonation, and UV treatment[J]. International Journal of Hygiene and Environmental Health, 2019, 222(3):541-548.
    [29] JIN M, LIU L, WANG D N, et al. Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation[J]. Isme Journal, 2020, 14(7):1847-1856.
    [30] SHI P, JIA S Y, ZHANG X X, et al. Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water[J]. Water Research, 2013, 47(1):111-120.
    [31] ZHANG S H, YE C S, LIN H R, et al. UV disinfection induces a VBNC state in Escherichia coli and Pseudomonas aeruginosa[J]. Environmental Science & Technology, 2015, 49(3):1721-1728.
    [32] LIN H R, YE C S, CHEN S, et al. Viable but non-culturable E. coli induced by low level chlorination have higher persistence to antibiotics than their culturable counterparts[J]. Environmental Pollution, 2017, 230:242-249.
    [33] DU M, CHEN J X, SUN F R, et al. Studies of viable but nonculturable Vibrio parahaemolyticus at low temperature under poor nutrition conditions and its resuscitation[J]. Acta Hydrobiologica Sinica, 2008, 32(2):178-183.
    [34] LIU G, BAKKER G L, LI S, et al. Pyrosequencing reveals bacterial communities in unchlorinated drinking water distribution system:an integral study of bulk water, suspended solids, loose deposits, and pipe wall biofilm[J]. Environmental Science & Technology, 2014, 48(10):5467-5476.
    [35] LIU S, GUNAWAN C, BARRAUD N, et al. Understanding, monitoring, and controlling biofilm growth in drinking water distribution systems[J]. Environmental Science & Technology, 2016, 50(17):8954-8976.
    [36] FISH K E, OSBORN A M, BOXALL J. Characterising and understanding the impact of microbial biofilms and the extracellular polymeric substance (EPS) matrix in drinking water distribution systems[J]. Environmental Science-Water Research & Technology, 2016, 2(4):614-630.
    [37] ZHANG J P, LI W Y, CHEN J P, et al. Impact of biofilm formation and detachment on the transmission of bacterial antibiotic resistance in drinking water distribution systems[J]. Chemosphere, 2018, 203:368-380.
    [38] ZHU L, CHEN T, XU L, et al. Effect and mechanism of quorum sensing on horizontal transfer of multidrug plasmid RP4 in BAC biofilm[J]. Science of the Total Environment, 2020, 698:134236.
    [39] LUO G, LI B, LI L G, et al. Antibiotic resistance genes and correlations with microbial community and metal resistance genes in full-scale biogas reactors as revealed by metagenomic analysis[J]. Environmental Science & Technology, 2017, 51(7):4069-4080.
    [40] VU NGAN B, NHUNG D, NGUYEN T K A, et al. Antibiotics in the aquatic environment of Vietnam:sources, concentrations, risk and control strategy[J]. Chemosphere, 2018, 197:438-50.
    [41] GAFFNEY V D, ALMEIDA C M M, RODRIGUES A, et al. Occurrence of pharmaceuticals in a water supply system and related human health risk assessment[J]. Water Research, 2015, 72:199-208.
    [42] WANG H B, HU C, SHEN Y, et al. Response of microorganisms in biofilm to sulfadiazine and ciprofloxacin in drinking water distribution systems[J]. Chemosphere, 2019, 218:197-204.
    [43] DUARTE A C, RODRIGUES S, AFONSO A, et al. Antibiotic resistance in the drinking water:old and new strategies to remove antibiotics, resistant bacteria, and resistance genes[J]. Pharmaceuticals, 2022, 15(4):22.
    [44] KE Y C, SUN W J, JING Z B, et al. Seasonal variations of microbial community and antibiotic resistome in a suburb drinking water distribution system in a northern Chinese city[J]. Journal of Environmental Sciences, 2023, 127:714-725.
    [45] 杜艳君, 莫杨, 李湉湉. 环境健康风险评估方法第四讲暴露评估(续三)[J]. 环境与健康杂志, 2015, 32(6):556-559.
    [46] ZHANG Y L, XU S Y, YANG Y J, et al. A ‘time bomb’ in the human intestine-the multiple emergence and spread of antibiotic-resistant bacteria[J]. Environmental Microbiology, 2022, 24(3):1231-1246.
    [47] MCINNES R S, MCCALLUM G E, LAMBERTE L E, et al. Horizontal transfer of antibiotic resistance genes in the human gut microbiome[J]. Current Opinion in Microbiology, 2020, 53:35-43.
    [48] PRUDEN A, LARSSON D G J, AMEZQUITA A, et al. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment[J]. Environmental Health Perspectives, 2013, 121(8):878-885.
    [49] COLEMAN B L, SALVADORI M I, MCGEER A J, et al. The role of drinking water in the transmission of antimicrobial-resistant E. coli[J]. Epidemiology and Infection, 2012, 140(4):633-642.
    [50] LEONARD A F C, YIN X L, ZHANG T, et al. A coliform-targeted metagenomic method facilitating human exposure estimates to Escherichia coli-borne antibiotic resistance genes[J]. Fems Microbiology Ecology, 2018, 94(3):7.
    [51] United States Environmental Protection Agency, National Center for Environmental Assessment. Exposure Factors Handbook (2011 Edition)[M]. Washington DC:Immediate Office,2015.
    [52] CARMICHEAL N, RANDALL G,BRAUN C, et al. Exposure Factors Sourcebook for European Populations (with Focus on UK Data)[M].Brussels:European Centre for Ecotoxicology and Toxicology of Chemicals,2001.
    [53] 环境保护部.中国人群暴露参数手册(成人卷)[M].北京:中国环境出版社,2013.
    [54] WAN K, ZHENG S K, YE C S, et al. Ancient oriental wisdom still works:removing args in drinking water by boiling as compared to chlorination[J]. Water Research, 2022, 209:10.
    [55] RUPPE E, GHOZLANE A, TAP J, et al. Prediction of the intestinal resistome by a three-dimensional structure-based method[J]. Nature Microbiology, 2019, 4(1):112.
    [56] ZHANG Z Y, ZHANG Q, WANG T Z, et al. Assessment of global health risk of antibiotic resistance genes[J]. Nature Communications, 2022, 13(1):11.
    [57] SHI P, JIA S Y, ZHANG X X. Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water[J]. Water Research, 2013, 47(1):111-120.
    [58] MIRANDA C C, DE FILIPPIS I, PINTO L H, et al. Genotypic characteristics of multidrug-resistant Pseudomonas aeruginosa from hospital wastewater treatment plant in Rio de Janeiro, Brazil[J]. Journal of Applied Microbiology, 2015, 118(6):1276-1286.
    [59] WINKLER M L, PAPP-WALLACE K M, HUJER A M, et al. Unexpected challenges in treating multidrug-resistant gram-negative bacteria:resistance to ceftazidime-avibactam in archived isolates of pseudomonas aeruginosa[J]. Antimicrobial Agents and Chemotherapy, 2015, 59(2):1020-1029.
    [60] HU Y R, ZHANG T Y, JIANG L, et al. Occurrence and reduction of antibiotic resistance genes in conventional and advanced drinking water treatment processes[J]. Science of the Total Environment, 2019, 669:777-784.
    [61] ZHAO Q Q, HE H, GAO K, et al. Fate, mobility, and pathogenicity of drinking water treatment plant resistomes deciphered by metagenomic assembly and network analyses[J]. Science of the Total Environment, 2022, 804:150095.
    [62] WANG J, SHA X N, CHEN X F, et al. Removal and distribution of antibiotics and resistance genes in conventional and advanced drinking water treatment processes[J]. Journal of Water Process Engineering, 2022, 50:9.
    [63] GUO X P, LI J, YANG F, et al. Prevalence of sulfonamide and tetracycline resistance genes in drinking water treatment plants in the Yangtze River Delta, China[J]. Science of the Total Environment, 2014, 493:626-631.
    [64] ZHANG S T, LIN W F, YU X. Effects of full-scale advanced water treatment on antibiotic resistance genes in the Yangtze Delta area in China[J]. Fems Microbiology Ecology, 2016, 92(5):9.
    [65] LI N, SHENG G P, LU Y Z, et al. Removal of antibiotic resistance genes from wastewater treatment plant effluent by coagulation[J]. Water Research, 2017, 111:204-212.
    [66] XU L K, CAMPOS L C, CANALES M, et al. Drinking water biofiltration:behaviour of antibiotic resistance genes and the association with bacterial community[J]. Water Research, 2020, 182:10.
    [67] SHEN L, GRIFFITH T M, NYANGARESI P O, et al. Efficacy of UVC-LED in water disinfection on Bacillus species with consideration of antibiotic resistance issue[J]. Journal of Hazardous Materials, 2020, 386:9.
    [68] CHEN X F, YIN H L, LI G Y, et al. Antibiotic-resistance gene transfer in antibiotic-resistance bacteria under different light irradiation:Implications from oxidative stress and gene expression[J]. Water Research, 2019, 149:282-291.
    [69] YI S M, WANG W, BAI F L, et al. Antimicrobial effect and membrane-active mechanism of tea polyphenols against Serratia marcescens[J]. World Journal of Microbiology & Biotechnology, 2014, 30(2):451-460.
    [70] ZHANG T Y, HU Y R, JIANG L, et al. Removal of antibiotic resistance genes and control of horizontal transfer risk by UV, chlorination and UV/chlorination treatments of drinking water[J]. Chemical Engineering Journal, 2019, 358:589-597.
    [71] MA L P, YANG H Y, GUAN L, et al. Risks of antibiotic resistance genes and antimicrobial resistance under chlorination disinfection with public health concerns[J]. Environment International, 2022, 158:106978.
    [72] LIN W F, ZHANG M L, ZHANG S H, et al. Can chlorinution co-select antibiotic-resistance genes?[J]. Chemosphere, 2016, 156:412-419.
    [73] SHARMA V K, JOHNSON N, CIZMAS L, et al. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes[J]. Chemosphere, 2016, 150:702-714.
    [74] JIA S Y, BIAN K Q, SHI P, et al. Metagenomic profiling of antibiotic resistance genes and their associations with bacterial community during multiple disinfection regimes in a full-scale drinking water treatment plant[J]. Water Research, 2020, 176:115721.
    [75] LING F Q, WHITAKER R, LECHEVALLIER M W, et al. Drinking water microbiome assembly induced by water stagnation[J]. ISME Journal, 2018, 12(6):1520-1531.
    [76] ZUO Q, ZHANG Y, ZHENG H, et al. A facile method to modify activated carbon fibers for drinking water purification[J]. Chemical Engineering Journal, 2019, 365:175-182.
    [77] BARNABY R, LIEFELD A, JACKSON B P, et al. Effectiveness of table top water pitcher filters to remove arsenic from drinking water[J]. Environmental Research, 2017, 158:610-615.
    [78] AHMEDNA M, MARSHALL W E, HUSSEINY A A, et al. The use of nutshell carbons in drinking water filters for removal of trace metals[J]. Water Research, 2004, 38(4):1062-1068.
    [79] PATIL R, AHMAD D, BALKUNDAE P, et al. Development of low cost point-of-use (POU) interventions for instant decontamination of drinking water in developing countries[J]. Journal of Water Process Engineering, 2020, 37:10.
    [80] LIN W F, YE C S, GU L Z, et al. Analysis of microbial contamination of household water purifiers[J]. Applied Microbiology and Biotechnology, 2020, 104(10):4533-4545.
    [81] COOK D, NEWCOMBE G. Comparison and modeling of the adsorption of two microcystin analogues onto powdered activated carbon[J]. Environmental Technology, 2008, 29(5):525-534.
    [82] LO S F, WANG S Y, TSAI M J, et al. Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons[J]. Chemical Engineering Research & Design, 2012, 90(9):1397-1406.
    [83] SIMPSON D R. Biofilm processes in biologically active carbon water purification[J]. Water Research, 2008, 42(12):2839-2848.
    [84] ZHOU Z C, XU L, ZHU L, et al. Metagenomic analysis of microbiota and antibiotic resistome in household activated carbon drinking water purifiers[J]. Environment International, 2021, 148:9.
  • 加载中
计量
  • 文章访问数:  128
  • HTML全文浏览量:  14
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-20
  • 网络出版日期:  2023-11-15

目录

    /

    返回文章
    返回