CARBON EMISSION ANALYSIS OF WASTE BIODEGRADABLE PLASTICS BY DIFFERENT DISPOSAL TECHNOLOGIES
-
摘要: 生物降解塑料因其环境友好性引起了广泛关注,但其处置过程中的碳排放情况尚不明晰。随着处置技术的不断研发与应用,不同处置技术的碳排放差异值得探究。基于排放因子法和质量平衡法,从运行能耗间接碳排放、塑料分解直接碳排放和资源回收碳补偿3方面,对6种主要处置技术进行了对比分析。结果表明:处置1 t废弃生物降解塑料,净碳排放量顺序为填埋处置>焚烧处置>化学回收>工业堆肥>厌氧发酵>机械回收。机械回收和厌氧发酵因可实现塑料产品和沼气的资源回收,净碳排放分别为-842.33,-341.55 kg CO2eq,展现出较好的碳减排潜力。其中,机械回收的间接碳排放、直接碳排放和碳补偿分别是其他处置技术的0.62~22.96,0.13~0.52,0.93~1.58倍;厌氧发酵相应分别为0.09~2.11,0.26~1.93,0.59~0.85倍。这表明机械回收相比于厌氧发酵,产生了更多的能源消耗和更高的碳补偿效果,但机械回收仍存在废弃物分拣困难、回收效率低、回收产品性能差等难题;从降碳潜力出发,厌氧发酵更具发展前景。此外,降低运行能耗、助力资源回收、充分发挥碳补偿潜力是实现废弃生物降解塑料处置阶段碳减排的主要措施。从助力"双碳"角度,该成果可为废弃生物降解塑料处置技术的选择提供参考。Abstract: Biodegradable plastics have attracted wide attention because of their environmental friendliness, but the carbon emission in the waste disposal process is still unclear. With the development and application of disposal technologies, the differences in carbon emissions of these technologies are worth exploring. To reveal the carbon emissions of different disposal technologies for waste biodegradable plastics, this study compares the indirect carbon emissions from operation energy consumption, direct carbon emissions from plastic decomposition, and carbon offset from resource recovery, based on the emission factor and mass balance method. The results showed that the net carbon emissions per ton of waste biodegradable plastics were as follows:landfill > incineration > industrial composting > chemical recovery > anaerobic fermentation > mechanical recycling. Because of the resource recovery of plastic and biogas, mechanical recycling and anaerobic fermentation had a net carbon emission of -842.33 kg CO2eq and -341.55 kg CO2eq, respectively, showing their better potential for carbon reduction. Among them, the indirect carbon emission, direct carbon emission, and carbon offset of mechanical recycling were 0.62~22.96, 0.13~0.52, and 0.93~1.58 times of other disposal technologies, respectively. And those of anaerobic fermentation were 0.09~2.11, 0.26~1.93, and 0.59~0.85 times, respectively. This indicated that mechanical recycling has higher energy consumption and carbon offsetting effects than anaerobic fermentation. However, the low efficiency and poor performance of recycled products limits the development of mechanical recycling for waste biodegradable plastics. Anaerobic fermentation has more development prospects from the perspective of carbon reduction potential. In addition, reducing operation energy consumption, promoting resource recovery, and giving full play to carbon offset potential are the main measures to achieve carbon emission reduction in the disposal of waste biodegradable plastics. From the perspective of striving for Double Carbon Goal, this study provides a reference for the selection of waste biodegradable plastics disposal technology.
-
Key words:
- carbon emission /
- biodegradable plastics /
- disposal technology /
- carbon offset /
- resource recovery
-
[1] SUN L, CUI H, GE Q. Will China achieve its 2060 carbon neutral commitment from the provincial perspective?[J]. Advances in Climate Change Research, 2022, 13(2):169-178. [2] BERGMANN M, ALMROTH B C, BRANDER S M, et al. A global plastic treaty must cap production[J]. Science, 2022, 376(6592):469-470. [3] FILHO C R S, VELIS C A. United Nations' plastic pollution treaty pathway puts waste and resources management sector at the centre of massive change[J]. Waste Management & Research, 2022, 40(5):487-489. [4] D. M T, GUSMAN N, FATIMAH M, et al. Sustainability of biodegradable plastics:new problem or solution to solve the global plastic pollution?[J]. Current Research in Green and Sustainable Chemistry, 2022, 5. [5] ANSHASSI M, SMALLWOOD T, TOWNSEND T G. Life cycle GHG emissions of MSW landfilling versus incineration:expected outcomes based on US landfill gas collection regulations[J]. Waste Management, 2022, 142:44-54. [6] 国家发展改革委、生态环境部. 关于进一步加强塑料污染治理的意见[EB/OL].2021:41-43. DOI: 10.41707/y.cnki.yslgy.2022.000023. [7] 刘馨蔚.全球"限塑令"来袭[EB/OL]. https://www.sohu.com/a/460376138_120325604. 20214-14. [8] 国务院办公厅.关于限制生产销售使用塑料购物袋的通知[EB/OL].http://www.gov.cn/zhuanti/2015-06/13/content_2879030.htm. 2008-3-28. [9] 钱伯章.可生物降解塑料的发展现状与前景[J].国外塑料,2010,28(8):38-43. [10] CARLOS S-L, NURIA C-C, ANA B-S. Biodegradable plastics can alter carbon and nitrogen cycles to a greater extent than conventional plastics in marine sediment[J]. Science of the Total Environment, 2021, 756:143978. [11] VARDAR S, DEMIREL B, ONAY T T. Degradability of bioplastics in anaerobic digestion systems and their effects on biogas production:a review[J]. Reviews in Environmental Science and Bio/Technology, 2022, 21(1):205-223. [12] NARANCIC T, CERRONE F, BEAGAN N, et al. Recent advances in bioplastics:application and biodegradation[J]. Polymers, 2020, 12(4):920. [13] ZHU J, WANG C. Biodegradable plastics:green hope or greenwashing?[J]. Marine Pollution Bulletin, 2020, 161(PB):111774. [14] 侯冠一,翁云宣.国内外生物降解塑料产业发展现状[EB/OL].2021:139-58. DOI: 10.41707/y.cnki.yslgy.2022.000040. [15] 许明奕,逄宇帆,刑涛,等.聚乳酸合成方法的研究进展及市场分析[J].应用化工,2022,51(12):3614-3618,24. [16] 山西证券.塑料及塑料制品可降解材料行业深度报告[EQ/OL]. https://pdf.dfcfw.com/pdf/H3_AP202304191585570324_1.pdf?. 2023-04-18. [17] AHAMED A, VEKSHA A, GIANNIS A, et al. Flexible packaging plastic waste-environmental implications, management solutions, and the way forward[J]. Current Opinion in Chemical Engineering, 2021, 32:100684. [18] HERMANN B G, DEBEER L, WILDE B D. To compost or not to compost:Carbon and energy footprints of biodegradable materials' waste treatment[J]. Polymer Degradation and Stability, 2011, 96(6):1159-1171. [19] PAYNE J, JONES M D. The chemical recycling of polyesters for a circular plastics economy:challenges and emerging opportunities[J]. Chemsuschem, 2021, 14(19):4041-4070. [20] KOSHELEVA A, GADALETA G, GISI S D, et al. Co-digestion of food waste and cellulose-based bioplastic:from batch to semi-continuous scale investigation[J]. Waste Management, 2023, 156:272-281. [21] TSENG H C, FUJIMOTO N, OHNISHI A. Biodegradability and methane fermentability of polylactic acid by thermophilic methane fermentation[J]. Bioresource Technology Reports, 2019, 8(C):100327. [22] BANDINI F, FRACHE A, FERRARINI A, et al. Fate of biodegradable polymers under industrial conditions for anaerobic digestion and aerobic composting of food waste[J]. Journal of Polymers and the Environment, 2020, 28(9):2539-2550. [23] ABRAHAM A, PARK H, CHOI O. Anaerobic co-digestion of bioplastics as a sustainable mode of waste management with improved energy production:a review[J]. Bioresource Technology, 2021, 322:25. [24] MAGA D, HIEBEL M, THONEMANN N. Life cycle assessment of recycling options for polylactic acid[J]. Resources, Conservation & Recycling, 2019, 149:86-96. [25] BÁTORI V, ÅKESSON D, ZAMANI A. Anaerobic degradation of bioplastics:a review[J]. Waste Management, 2018, 80:406-413. [26] YAGI H, NINOMIYA F, KUNIOKA M F M. Anaerobic biodegradation tests of poly(lactic acid) under mesophilic and thermophilic conditions using a new evaluation system for methane fermentation in anaerobic sludge[J]. International Journal of Molecular Sciences, 2009, 10(9):3824-3835. [27] 边潇,宫徽,阎中,等.餐厨垃圾不同"收集-处理"模式的碳排放估算对比[J].环境工程学报,2019,13(2):449-456. [28] ABBATE E, ROVELLI D, ANDREOTTI M, et al. Plastic packaging substitution in industry:variability of LCA due to manufacturing countries[J]. Procedia CIRP, 2022, 105:392-397. [29] SAEAUNG K, PHUSUNTI N, PHETWAROTAI W, et al. Catalytic pyrolysis of petroleum-based and biodegradable plastic waste to obtain high-value chemicals[J]. Waste Management, 2021, 127:101-111. [30] GÖTZE R, PIVNENKO K, BOLDRIN A. Physico-chemical characterisation of material fractions in residual and source-segregated household waste in Denmark[J]. Waste Management, 2016, 54:13-26. [31] CAPPUCCI G M, AVOLIO R, CARFAGNA C, et al. Environmental life cycle assessment of the recycling processes of waste plastics recovered by landfill mining[J]. Waste Management, 2020, 118:68-78. [32] CHENA Y, CUIA Z, CUIB X, et al. Life cycle assessment of end-of-life treatments of waste plastics in China[J]. Resources Conservation and Recycling, 2019, 146:348-357. [33] ANDRADE M F C D, SOUZA P M S, CAVALETT O, et al. Life cycle assessment of poly(lactic acid) (PLA):comparison between chemical recycling, mechanical recycling and composting[J]. Journal of Polymers and the Environment, 2016, 24(4):372-384. [34] 伍跃辉.废塑料资源化技术评估与潜在环境影响的研究[D].哈尔滨:哈尔滨工业大学,2013. [35] 赵刚,唐建国,徐竟成等.中美典型污泥处理处置工程能耗和碳排放比较分析[J].环境工程,2022,40(12):9-16. [36] IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories[R]. IPCC, Switzerland, 2019. [37] 何明浩,徐超,李兵,等.通风量对餐厨垃圾堆肥中氮素转化及N2O释放的影响[J].宁波大学学报(理工版),2021,34(6):114-120. [38] 王琳,李德彬,刘子为,等.污泥处理处置路径碳排放分析[J].中国环境科学,2022,42(5):2404-2412. [39] POESCHL M, WARD S, OWENDE P. Environmental impacts of biogas deployment-Part Ⅰ:life cycle inventory for evaluation of production process emissions to air[J]. Journal of Cleaner Production, 2011, 24:168-183. [40] 黄凯葳.基于生命周期方法的农村生活垃圾碳减排潜力研究[D].武汉:华中农业大学,2022. [41] 徐涛.厨余垃圾生命周期评价[D]. 武汉:华中科技大学,2013. [42] 夏雪,邵钱祺,曹悦,等.不同处理模式下污泥厌氧消化的能源回收与碳排放分析[J].环境工程,2023,41(6):1-11. [43] OLIVEIRA C C N D, ZOTIN M Z, ROCHEDO P R R, et al. Achieving negative emissions in plastics life cycles through the conversion of biomass feedstock[J]. Biofuels Bioproducts & Biorefining-Biofpr, 2021, 15(2):430-453. [44] MISTRY A N, KACHENCHART B, PINYAKONG O, et al. Bioaugmentation with a defined bacterial consortium:a key to degrade high molecular weight polylactic acid during traditional composting[J]. Bioresource Technology, 2023, 367:128237. [45] FOGAŠOVÁ M, FIGALLA S, DANIŠOVÁ L, et al. PLA/PHB-Based Materials Fully Biodegradable under Both Industrial and Home-Composting Conditions[J]. Polymers, 2022, 14(19):4113. [46] NOMADOLO N, SWANEPOEL O E D A, MOKHENA T, et al. A comparative study on the aerobic biodegradation of the biopolymer blends of poly(butylene succinate), poly(butylene adipate terephthalate) and poly(lactic acid)[J]. Polymers, 2022, 14(9):1894. [47] PAPA G, CUCINA M, ECHCHOUKI K, et al. Anaerobic digestion of organic waste allows recovering energy and enhancing the subsequent bioplastic degradation in soil[J]. Resources Conservation and Recycling, 2023, 188:106694. [48] AN X H, LIU P, MENG Q, et al. Research on life cycle environmental property of biomass biodegradable packaging material[J]. Applied Mechanics and Materials, 2014, 3558:670-671. [49] MORETTI C, HAMELIN L, JAKOBSEN L G. Cradle-to-grave life cycle assessment of single-use cups made from PLA, PP and PET[J]. Resources, Conservation & Recycling, 2021, 169:16. [50] 华经产业研究院.塑料回收行业现状及趋势分析,中国塑料回收率有待进一步提高[EQ/OL]. https://zhuanlan.zhihu.com/p/470671883. 2022-02-22. [51] 电工之家.一吨煤产生多少度电?[EQ/OL]. https://www.dgzj.com/dianchang/89228.html. 2018-10-03. [52] 垃圾发电.提高垃圾焚烧发电厂热效率的措施[EQ/OL]. https://zhuanlan.zhihu.com/p/258810558. 2020-09-24. [53] FAN Z, YUNAN S, JIANYUAN L, et al. Pyrolysis of 3D printed polylactic acid waste:a kinetic study via TG-FTIR/GC-MS analysis[J]. Journal of Analytical and Applied Pyrolysis, 2022, 166. [54] ERWIN T H V, STEVE D. Life Cycle Inventory and Impact Assessment Data for 2014 Ingeo? Polylactide Production[J]. Industrial Biotechnology, 2015, 11(3):167-180. [55] SAIBUATRONG W, CHEROENNET N, SUWANMANEE U. Life cycle assessment focusing on the waste management of conventional and bio-based garbage bags[J]. Journal of Cleaner Production, 2017, 158:319-334. [56] 李哲坤,张立秋,杜子文,等.城市污泥不同处理处置工艺路线碳排放比较[J].环境科学,2023,44(2):1181-1190. [57] 郝晓地,程慧芹,胡沅胜.碳中和运行的国际先驱奥地利Strass污水厂案例剖析[J].中国给水排水,2014,30(22):1-5. [58] PENG W, WANG Z, SHU Y, et al. Fate of a biobased polymer via high-solid anaerobic co-digestion with food waste and following aerobic treatment:insights on changes of polymer physicochemical properties and the role of microbial and fungal communities[J]. Bioresource Technology, 2022, 343:126079. [59] PARK A A H, CHOI O, SANG B I. Anaerobic co-digestion of bioplastics as a sustainable mode of waste management with improved energy production:a review[J]. Bioresource Technology, 2021, 322:124537. [60] 姜秀龙.强韧耐热聚乳酸纳米复合膜材料制备及性能研究[D].上海:东华大学,2022. [61] 张也.生物可降解聚己二酸对苯二甲酸丁二酯(PBAT)共混物及薄膜的制备与性能研究[D].长春:长春工业大学,2022.
点击查看大图
计量
- 文章访问数: 128
- HTML全文浏览量: 10
- PDF下载量: 9
- 被引次数: 0