中文核心期刊
CSCD来源期刊(核心库)
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

填埋场中鸟类觅食的污染物传播风险探究

王志杰 祁程 楼紫阳 王罗春 王川

王志杰, 祁程, 楼紫阳, 王罗春, 王川. 填埋场中鸟类觅食的污染物传播风险探究[J]. 环境工程, 2024, 42(4): 48-57. doi: 10.13205/j.hjgc.202404006
引用本文: 王志杰, 祁程, 楼紫阳, 王罗春, 王川. 填埋场中鸟类觅食的污染物传播风险探究[J]. 环境工程, 2024, 42(4): 48-57. doi: 10.13205/j.hjgc.202404006
WANG Zhijie, QI Cheng, LOU Ziyang, WANG Luochun, WANG Chuan. EXPLORING THE RISK OF POLLUTANT TRANSMISSION THROUGH BIRD FORAGING IN LANDFILLS: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 48-57. doi: 10.13205/j.hjgc.202404006
Citation: WANG Zhijie, QI Cheng, LOU Ziyang, WANG Luochun, WANG Chuan. EXPLORING THE RISK OF POLLUTANT TRANSMISSION THROUGH BIRD FORAGING IN LANDFILLS: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 48-57. doi: 10.13205/j.hjgc.202404006

填埋场中鸟类觅食的污染物传播风险探究

doi: 10.13205/j.hjgc.202404006
基金项目: 

高端外国专家项目(G2022037007L)

上海市青年科技启明星计划(22QB1403100)

详细信息
    作者简介:

    王志杰(2000-),男,硕士研究生,主要研究方向为填埋场污染物控制。zj_wangcs@163.com

    通讯作者:

    楼紫阳(1980-),男,教授,主要研究方向为生活垃圾填埋场稳定化及二次污染控制。louworld12@sjtu.edu.cn

EXPLORING THE RISK OF POLLUTANT TRANSMISSION THROUGH BIRD FORAGING IN LANDFILLS: A REVIEW

  • 摘要: 垃圾填埋场中大量的剩余食物吸引鸟类进入觅食。在有机质类垃圾被消耗的同时,塑料、重金属和病原体等污染物也被鸟类携带进入栖息地,对当地生态环境产生潜在影响。基于现有文献报道,梳理了鸟类在填埋场污染物迁移过程中扮演的角色,详细分析了塑料、重金属、抗生素耐药菌通过鸟类传播的具体途径及对环境造成的负面影响。根据鸟类进入填埋场的原因,针对性提出了未来填埋场管理的相关建议。以期在保护鸟类生态的同时,有效降低填埋场内污染物的传播风险及危害程度。
  • [1] HOORNWEG D, BHADA-TATA P, KENNEDY C. Environment: waste production must peak this century[J]. Nature, 2013, 502(7473): 615-617.
    [2] STEPHENS D W, KREBS J R. Foraging theory[M]. Princeton University Press, 1986.
    [3] SORIANO-REDONDO A, FRANCO A M, ACCIO M, et al. Flying the extra mile pays-off: foraging on anthropogenic waste as a time and energy-saving strategy in a generalist bird[J]. Science of the Total Environment, 2021, 782: 146843.
    [4] PLAZA P I, LAMBERTUCCI S A. How are garbage dumps impacting vertebrate demography, health, and conservation?[J]. Global Ecology and Conservation, 2017, 12: 9-20.
    [5] XIAOLI C, SHIMAOKA T, XIANYAN C, et al. Characteristics and mobility of heavy metals in an MSW landfill: implications in risk assessment and reclamation[J]. Journal of Hazardous Materials, 2007, 144(1/2): 485-491.
    [6] 耿晓梦, 赵由才, 夏旻, 等. 存余垃圾中废旧塑料性能演变及资源转化探讨[J]. 中国环境科学, 2021, 41(1): 273-278.
    [7] AKORTIA E, OKONKWO J O, LUPANKWA M, et al. A review of sources, levels, and toxicity of polybrominated diphenyl ethers (PBDEs) and their transformation and transport in various environmental compartments[J]. Environmental Reviews, 2016, 24(3): 253-273.
    [8] MELNYK A, DETTLAFF A, KUKLIN'SKA K, et al. Concentration and sources of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in surface soil near a municipal solid waste (MSW) landfill[J]. Science of the Total Environment, 2015, 530: 18-27.
    [9] LI J, XI B D, ZHU G H, et al. A critical review of the occurrence, fate and treatment of per-and polyfluoroalkyl substances (PFASs) in landfills[J]. Environ Res, 2023,218: 114980.
    [10] LIU X, YANG S, WANG Y Q, et al. Metagenomic analysis of antibiotic resistance genes (ARGs) during refuse decomposition[J]. Science of the Total Environment, 2018, 634: 1231-1237.
    [11] 龙於洋, 范丽娇, 沈东升, 等. 基于文献计量的垃圾填埋场污染物研究现状与趋势分析[J]. 环境污染与防治, 2023, 45(1): 97-104.
    [12] GONZLEZ-FERNNDEZ D, CZAR A, HANKE G, et al. Floating macrolitter leaked from Europe into the ocean[J]. Nature Sustainability, 2021, 4(6): 474-483.
    [13] LPEZ-GARCA A, SANZ-AGUILAR A, AGUIRRE J I. The trade-offs of foraging at landfills: landfill use enhances hatching success but decrease the juvenile survival of their offspring on white storks (Ciconia ciconia)[J]. Science of the Total Environment, 2021, 778: 146217.
    [14] WINTON R S, RIVER M. The biogeochemical implications of massive gull flocks at landfills[J]. Water Research, 2017, 122: 440-446.
    [15] TONGUE A D W, REYNOLDS S J, FERNIE K J, et al. Flame retardant concentrations and profiles in wild birds associated with landfill: a critical review[J]. Environ Pollut, 2019, 248: 646-658.
    [16] MALEKIAN M, HADI M, TARKESH M. Landscape features affecting bird diversity and abundance at an urban landfill site: a case study in Central Iran[J]. Bird Study, 2021, 68(1): 21-29.
    [17] GILBERT N I, CORREIA R A, SILVA J P, et al. Are white storks addicted to junk food? Impacts of landfill use on the movement and behaviour of resident white storks (Ciconia ciconia) from a partially migratory population[J]. Mov Ecol, 2016, 4: 1-13.
    [18] MCKAY A F, HOYE B J. Are migratory animals superspreaders of infection?[J]. Integrative and Comparative Biology, 2016, 56(2): 260-267.
    [19] 赵阳. 水鸟介导的水生生物扩散过程研究[D].上海:华东师范大学, 2022.
    [20] MARTN-VLEZ V, SANCHEZ M I, SHAMOUN-BARANES J, et al. Quantifying nutrient inputs by gulls to a fluctuating lake, aided by movement ecology methods[J]. Freshw Biol, 2019, 64(10): 1821-1832.
    [21] BRBARA A, TORRONTEGI O, CAMACHO M C, et al. Avian influenza virus surveillance in south-central Spain using fecal samples of aquatic birds foraging at landfills[J]. Front Vet Sci, 2017, 4: 178.
    [22] LOPES C S, PAIVA V H, VAZ P T, et al. Ingestion of anthropogenic materials by yellow-legged gulls (Larus michahellis) in natural, urban, and landfill sites along Portugal in relation to diet composition[J]. Environ Sci Pollut Res, 2021, 28: 19046-19063.
    [23] HERRERO-VILLAR M, TAGGART M A, MATEO R. Medicated livestock carcasses and landfill sites: sources of highly toxic veterinary pharmaceuticals and caffeine for avian scavengers[J]. Journal of Hazardous Materials, 2023, 459: 132195.
    [24] JAGIELLO Z, LPEZ-GARCA A, AGUIRRE J I, et al. Distance to landfill and human activities affects the debris incorporation into the white stork nests in urbanized landscape in central Spain[J]. Environ Sci Pollut Res, 2020, 27(24): 30893-30898.
    [25] TAULER-AMETLLER H, HERNNDEZ-MATAS A, PARS F, et al. Assessing the applicability of stable isotope analysis to determine the contribution of landfills to vultures’ diet[J]. PLoS one, 2018, 13(5): e0196044.
    [26] SOMVEILLE M, RODRIGUES A S L, MANICA A. Why do birds migrate? a macroecological perspective[J]. Global Ecology and Biogeography, 2015, 24(6): 664-674.
    [27] LPEZ-CALDERN C, MARTN-VLEZ V, BLAS J, et al. White stork movements reveal the ecological connectivity between landfills and different habitats[J]. Mov Ecol, 2023, 11(1): 1-13.
    [28] STEWART L G, LAVERS J L, GRANT M L, et al. Seasonal ingestion of anthropogenic debris in an urban population of gulls[J]. Mar Pollut Bull, 2020, 160:111549.
    [29] SEIF S, PROVENCHER J F, AVERY-GOMM S, et al. Plastic and non-plastic debris ingestion in three gull species feeding in an urban landfill environment[J]. Arch Environ Contam Toxicol, 2018, 74(3): 349-360.
    [30] BALLEJO F, PLAZA P, SPEZIALE K L, et al. Plastic ingestion and dispersion by vultures may produce plastic islands in natural areas[J]. Science of the Total Environment, 2021, 755:142421.
    [31] BJEDOV D, VELKI M, TOTH L, et al. Heavy metal (loid) effect on multi-biomarker responses in apex predator: novel assays in the monitoring of white stork nestlings[J]. Environ Pollut, 2023, 324: 121398.
    [32] MARTN-VLEZ V, HORTAS F, TAGGART M A, et al. Spatial variation and biovectoring of metals in gull faeces[J]. Ecological Indicators, 2021, 125: 107534.
    [33] JARMA D, SNCHEZ M I, GREEN A J, et al. Faecal microbiota and antibiotic resistance genes in migratory waterbirds with contrasting habitat use[J]. Science of the Total Environment, 2021, 783:146872.
    [34] MALEKIAN M, SHAGHOLIAN J, HOSSEINPOUR Z. Pathogen presence in wild birds inhabiting landfills in central iran[J]. Ecohealth, 2021, 18(1): 76-83.
    [35] KERRIC A, OKEME J, JANTUNEN L, et al. Spatial and temporal variations of halogenated flame retardants and organophosphate esters in landfill air: potential linkages with gull exposure[J]. Environ Pollut, 2021, 271:116396.
    [36] TONGUE A D W, FERNIE K J, HARRAD S, et al. Interspecies comparisons of brominated flame retardants in relation to foraging ecology and behaviour of gulls frequenting a UK landfill[J]. Science of the Total Environment, 2021, 764: 142890.
    [37] GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7):e1700782.
    [38] YADAV V, SHERLY M A, RANJAN P, et al. Framework for quantifying environmental losses of plastics from landfills[J]. Resources Conservation and Recycling, 2020, 161:104914.
    [39] CHARLTON-HOWARD H S, BOND A L, RIVERS-AUTY J, et al. 'Plasticosis’: characterising macro-and microplastic-associated fibrosis in seabird tissues[J]. Journal of Hazardous Materials, 2023, 450: 131090.
    [40] CANO-POVEDANO J, LPEZ-CALDERN C, SNCHEZ M I, et al. Biovectoring of plastic by white storks from a landfill to a complex of salt ponds and marshes[J]. Mar Pollut Bull, 2023, 197: 115773.
    [41] BRAHNEY J, HALLERUD M, HEIM E, et al. Plastic rain in protected areas of the United States[J]. Science, 2020, 368(6496): 1257-1260.
    [42] HOLLAND E R, MALLORY M L, SHUTLER D. Plastics and other anthropogenic debris in freshwater birds from Canada[J]. Science of the Total Environment, 2016, 571: 251-258.
    [43] KWIECIN'SKI Z, TRYJANOWSKI P, ZDUNIAK P. A large bird’s digestive tract has an opposite intersexual pattern than body size[J]. 2023.
    [44] WANG P L, WU D, YOU X X, et al. Distribution of antibiotics, metals and antibiotic resistance genes during landfilling process in major municipal solid waste landfills[J]. Environ Pollut, 2019, 255: 113222.
    [45] POURKHABBAZ H R, YOUSOFNIA H, CHERAGHI M, et al. Using of black kite (Milvus migrans) as a biological indicator of heavy metals in landfills (Case study: the northern of Iran)[J]. Journal of Animal Environment, 2021, 13(4): 89-96.
    [46] de la CASA-RESINO I, HERNNDEZ-MORENO D, CASTELLANO A, et al. Breeding near a landfill may influence blood metals (Cd, Pb, Hg, Fe, Zn) and metalloids (Se, As) in white stork (Ciconia ciconia) nestlings[J]. Ecotoxicology, 2014, 23: 1377-1386.
    [47] RIAZ A, SAID N, RIAZ M A, et al. 12. Heavy metals accumulation trends in scavenger birds from different landfill and dumping sites of Punjab[J]. Pure and Applied Biology (PAB), 2021, 11(1): 109-115.
    [48] LI Y J, YUAN Y, TAN W B, et al. Antibiotic resistance genes and heavy metals in landfill: a review[J]. Journal of Hazardous Materials, 2024, 464: 132395.
    [49] HAHN S, BAUER S, KLAASSEN M. Estimating the contribution of carnivorous waterbirds to nutrient loading in freshwater habitats[J]. Freshw Biol, 2007, 52(12): 2421-2433.
    [50] DOBROWOLSKI K A, KOZAKIEWICZ A, LEZ'NICKA B. The role of small mammals and birds in transport of matter through the shore zone of lakes[J]. Nutrient Dynamics and Retention in Land/Water Ecotones of Lowland, Temperate Lakes and Rivers, 1993,251(1): 81-93.
    [51] NAGY K A, GIRARD I A, BROWN T K. Energetics of free-ranging mammals, reptiles, and birds[J]. Annual Review of Nutrition, 1999, 19(1): 247-277.
    [52] KARASOV W H. Digestion in birds: chemical and physiological determinants and ecological implications[J]. Studies in Avian Biology, 1990, 13(39): 1-4.
    [53] EEVA T, RAIVIKKO N, ESPIN S, et al. Bird feces as indicators of metal pollution: pitfalls and solutions[J]. Toxics, 2020, 8(4).
    [54] FRIERI M, KUMAR K, BOUTIN A. Antibiotic resistance[J]. Journal of Infection and Public Health, 2017, 10(4): 369-378.
    [55] AHLSTROM C A, RAMEY A M, WOKSEPP H, et al. Early emergence of MCR-1-positive Enterobacteriaceae in gulls from Spain and Portugal[J]. Environmental Microbiology Reports, 2019, 11(5): 669-671.
    [56] FRANKLIN A B, RAMEY A M, BENTLER K T, et al. Gulls as sources of environmental contamination by colistin-resistant bacteria[J]. Sci Rep, 2020, 10(1): 4408.
    [57] AHLSTROM C A, van TOOR M L, WOKSEPP H, et al. Evidence for continental-scale dispersal of antimicrobial resistant bacteria by landfill-foraging gulls[J]. Science of the Total Environment, 2021, 764:144551.
    [58] FRANKLIN A B, RAMEY A M, BENTLER K T, et al. Gulls as sources of environmental contamination by colistin-resistant bacteria[J]. Sci Rep, 2020, 10(1):4408.
    [59] AHLSTROM C A, BONNEDAHL J, WOKSEPP H, et al. Acquisition and dissemination of cephalosporin-resistant E. coli in migratory birds sampled at an Alaska landfill as inferred through genomic analysis[J]. Sci Rep, 2018, 8(1): 7361.
    [60] GUITART-MATAS J, ESPUNYES J, ILLERA L, et al. High-risk lineages of extended spectrum cephalosporinase producing Escherichia coli from Eurasian griffon vultures (Gyps fulvus) foraging in landfills in north-eastern Spain[J]. Science of the Total Environment, 2024, 909: 168625.
    [61] MA Y L, STUBBINGS W A, ABDALLAH M A E, et al. Formal waste treatment facilities as a source of halogenated flame retardants and organophosphate esters to the environment: a critical review with particular focus on outdoor air and soil[J]. Science of the Total Environment, 2022, 807:150747.
    [62] SORAIS M, MAZEROLLE M J, GIROUX J F, et al. Landfills represent significant atmospheric sources of exposure to halogenated flame retardants for urban-adapted gulls[J]. Environ Int, 2020, 135:105387.
    [63] CURRIER H A, FREMLIN K M, ELLIOTT J E, et al. Bioaccumulation and biomagnification of PBDEs in a terrestrial food chain at an urban landfill[J]. Chemosphere, 2020, 238: 124577.
    [64] KERRIC A, MAZEROLLE M J, SORAIS M, et al. Impact of landfill characteristics on the atmospheric exposure to halogenated flame retardants in gulls[J]. Chemosphere, 2023, 343: 140207.
    [65] SORAIS M, SPIEGEL O, MAZEROLLE M J, et al. Gulls foraging in landfills: does atmospheric exposure to halogenated flame retardants result in bioaccumulation?[J]. Environ Int, 2021, 147: 106369.
    [66] DA C, MARTIN P, BURGESS N M, et al. European starlings sturnus vulgaris suggest that landfills are an important source of bioaccumulative flame retardants to Canadian Terrestrial Ecosystems[J]. Environmental Science & Technology, 2013, 47(21): 12238-12247.
    [67] KERRIC A, MAZEROLLE M J, GIROUX J F, et al. Halogenated flame retardant exposure pathways in urban-adapted gulls: are atmospheric routes underestimated?[J]. Science of The Total Environment, 2023, 860: 160526.
    [68] THAYSEN C, SORAIS M, VERREAULT J, et al. Bidirectional transfer of halogenated flame retardants between the gastrointestinal tract and ingested plastics in urban-adapted ring-billed gulls[J]. Science of the Total Environment, 2020, 730:138887.
    [69] LI G H, LI H G, LEFFELAAR P A, et al. Characterization of phosphorus in animal manures collected from three (dairy, swine, and broiler) farms in China[J]. PLoS One, 2014, 9(7): e102698.
    [70] FERNNDEZ-JURICIC E, ERICHSEN J T, KACELNIK A. Visual perception and social foraging in birds[J]. Trends in Ecology & Evolution, 2004, 19(1): 25-31.
    [71] FERNNDEZ-JURICIC E, SMITH R, KACELNIK A. Increasing the costs of conspecific scanning in socially foraging starlings affects vigilance and foraging behaviour[J]. Anim Behav, 2005, 69(1): 73-81.
    [72] ROMAN L, LOWENSTINE L, PARSLEY L M, et al. Is plastic ingestion in birds as toxic as we think? Insights from a plastic feeding experiment[J]. Science of the Total Environment, 2019, 665: 660-667.
    [73] CUNHA W A, FREITAS  N, GOMES L A S, et al. From carrion-eaters to plastic material plunderers: toxicological impacts of plastic ingestion on black vultures, Coragyps atratus (Cathartiformes: Cathartidae)[J]. Journal of Hazardous Materials, 2022, 424: 127753.
    [74] SAVOCA M S, NEVITT G A. Evidence that dimethyl sulfide facilitates a tritrophic mutualism between marine primary producers and top predators[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(11): 4157-4161.
    [75] NEVITT G A. Sensory ecology on the high seas: the odor world of the procellariiform seabirds[J]. Journal of Experimental Biology, 2008, 211(11): 1706-1713.
    [76] NEVITT G A, VEIT R R, KAREIVA P. Dimethyl sulphide as a foraging cue for Antarctic procellariiform seabirds[J]. Nature, 1995, 376(6542): 680-682.
    [77] SAVOCA M S, WOHLFEIL M E, EBELER S E, et al. Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds[J]. Science Advances, 2016, 2(11):e1600395.
    [78] WIKELSKI M, QUETTING M, CHENG Y, et al. Smell of green leaf volatiles attracts white storks to freshly cut meadows[J]. Sci Rep, 2021, 11(1): 12912.
    [79] GRIGG N P, KRILOW J M, GUTIERREZ-IBANEZ C, et al. Anatomical evidence for scent guided foraging in the turkey vulture[J]. Sci Rep, 2017, 7:17408.
    [80] BELANT J L. Gulls in urban environments: landscape-level management to reduce conflict[J]. Landsc Urban Plann, 1997, 38(3/4): 245-258.
    [81] COOK A, RUSHTON S, ALLAN J, et al. An evaluation of techniques to control problem bird species on landfill sites[J]. Environ Manage, 2008, 41: 834-843.
    [82] THIRIOT E, MOLINA P, GIROUX J F. Rubber shots not as effective as selective culling in deterring gulls from landfill sites[J]. Appl Anim Behav Sci, 2012, 142(1/2): 109-115.
    [83] THIRIOT E, PATENAUDE-MONETTE M, MOLINA P, et al. The efficiency of an integrated program using falconry to deter gulls from landfills[J]. Animals, 2015, 5(2): 214-225.
    [84] CASTGE I, MILON E, LALANNE Y, et al. Colonization of the Yellow-legged gull in the southeastern Bay of Biscay and efficacy of deterring systems on landfill site[J]. Estuar Coast Shelf Sci, 2016, 179: 207-214.
    [85] ARVALO-AYALA D J, REAL J, DUR C, et al. Reduction of organic waste in a landfill lowers the visitation probability but not the local abundance of a long-lived scavenger species[J]. Bird Conserv Int, 2023, 33: e15.
  • 加载中
计量
  • 文章访问数:  31
  • HTML全文浏览量:  4
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-08
  • 网络出版日期:  2024-06-01

目录

    /

    返回文章
    返回