RAPID START-UP AND MICROBIAL COMMUNITY ANALYSIS OF A SULFUR AUTOTROPHIC DENITRIFICATION COUPLED ANAEROBIC AMMONIA OXIDATION DENITRIFICATION SYSTEM
-
摘要: 以硫代硫酸钠为电子供体,采用梯度增加基质负荷的方式,在SBR反应器中完成硫自养反硝化(SAD)工艺启动。通过接种厌氧氨氧化(Anammox)污泥,采用pH和NO-3-N/NH+4-N联合调控策略进行研究,实现硫自养反硝化耦合厌氧氨氧化(SAD/A)自养脱氮系统快速启动及稳定运行。结果表明:30 d成功将反硝化污泥驯化为SAD污泥,90 d后,SBR反应器成功富集SAD污泥,系统NO-3-N去除率可达到85%以上。SAD/A系统2种种泥最佳接种比为3∶1,运行14 d后SAD/A系统成功启动。30 d后,系统NO-3-N去除率可达到85%,NH+4-N去除率达到80%。pH值为8,且ρ(NO-3-N)/ρ(NH+4-N)为1.8时,耦合系统脱氮效率最佳,实现稳定运行。高通量测序结果表明:SAD/A系统整体的物种多样性和丰富度增加,优势微生物菌属为厌氧氨氧化菌属(Candidatus Brocadia)和硫杆菌属(Thiobacillus),二者相对丰度相近,系统耦合度较好。Abstract: In this paper, the sulfur autotrophic denitrification (SAD) process start-up was accomplished in an SBR reactor using sodium thiosulfate as an electron donor, and a gradual increase in substrate loading. The rapid start-up and stable operation of the sulfur autotrophic denitrification coupled with anaerobic ammonia oxidation (SAD/A) autotrophic denitrification system was developed by inoculating Anammox sludge with a combined pH and NO-3-N/NH+4-N regulation strategy. The results showed that in 30 days, the denitrification sludge had been domesticated into SAD sludge. After 90 days, the SBR reactor had been successfully enriched with SAD sludge, and more than 85% of NO-3-N had been removed from the system. The SAD/A system was successfully started after 14 days of operation with an optimal inoculation ratio of 3∶1 for both two species of sludge. After 30 days, the NO-3-N removal rate of the system could reach 85% and the NH+4-N removal rate could reach 80%. The coupled system’s best denitrification efficiency was achieved at a pH of 8 and a NO-3-N/NH+4-N ratio of 1.8, and it operated steadily. High-throughput sequencing results showed that the overall species diversity and richness in the SAD/A system was increased after coupling, and the dominant microbial genera were Candidatus Brocadia and Thiobacillus, with similar relative abundances, indicating a good coupling effect of SAD/A.
-
[1] 方文烨,李祥,黄勇,等. 单质硫自养短程反硝化耦合厌氧氨氧化强化脱氮[J]. 环境科学,2020,41(8):3699-3706. [2] VAN D G, MULDER A, DE B P, et al. Anaerobic oxidation of ammonium is a biologically mediated process[J]. Applied and Environmental Microbiology, 1995, 61(4): 1246-1251. [3] STROUS M, PELLETIER E, MANGENOT S, et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome[J]. Nature, 2006, 440(7085): 790-794. [4] 黄锐,宋云杰,田亮,等. 厌氧氨氧化耦合反硝化工艺研究进展[J]. 环境科学与技术,2022,45(3):212-222. [5] MATHAVA K, JIH G L. Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal-strategies and issues[J]. Journal of Hazardous Materials, 2010, 178(1): 1-9. [6] SEN L, HAMISH R M, HAO T W, et al. Biological sulfur oxidation in wastewater treatment: a review of emerging opportunities[J]. Water Research, 2018, 143(10): 399-415. [7] DENG Y F, ZAN F X, HUANG H, et al. Coupling sulfur-based denitrification with anammox for effective and stable nitrogen removal: a review[J]. Water Research, 2022, 224: 119051. [8] 刘锋,张雪智,王苏琴,等. 硫代硫酸盐驱动自养反硝化耦合厌氧氨氧化强化总氮去除[J]. 化工进展,2022,41(2):990-997. [9] STROUS M, KUENEN J G, JETTEN M S. Key physiology of anaer-obic ammonium oxidation[J]. Applied and Environmental Microbiology, 1999,65(7):3248-3250. [10] RUSS L, SPETH D R, JETTEN M S, et al. Interactions between anaerobic ammonium and sulfur-oxidizing bacteria in a laboratory scale model system[J]. Environmental Microbiology, 2014, 16(11): 3487-3498. [11] QIN Y J, WU C L, CHEN B Q, et al. Short term performance and microbial community of a sulfidebased denitrification and Anammox coupling system at different N/S ratios[J]. Bioresource Technology, 2019, 294: 122130. [12] 夏琼琼,张文安,王雅雄,等.污水处理厌氧氨氧化工艺研究与应用进展[J]. 水处理技术,2019,45(5):1-5. [13] LI B, ZHANG W, YAN X, et al. Startup and performance stability of a nitritation-anammox reactor using granular sludge[J]. Polish Journal of Environmental Studies, 2017, 26(1): 173-180. [14] STROUS M, HEIJNEN J, KUENE J G, et al.The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorgnisms[J]. Applied Microbiology and Biotechnology,1998,50(5):589-596. [15] 国家环境保护总局,水和废水监测分析方法编委会. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社,2002:258-282. [16] 魏迅,李伟,姚念民,等. 周进周出二沉池的水力性能测试[J]. 中国给水排水,2006,22(8):105-108. [17] 王巧茹,史旋,宋伟,等. 碳源强化下的硫自养/异养反硝化协同作用[J]. 环境工程学报,2019,13(11):2593-2600. [18] MORAES B S, SOUZA T S O, FORESTI E. Effect of sulfide concentration on autotrophic denitrification from nitrate and nitrite in vertical fixed-bed reactors[J]. Process Biochemistry, 2012, 47(9): 1395-1401. [19] 苏柏懿,吴莉娜,王春艳,等. 硫自养反硝化在工业废水处理中的研究进展[J]. 应用化工,2022,51(4):1070-1076. [20] MAHMOOD Q, ZHENG P, CAI J, et al. Anoxic sulfide biooxidation using nitrite as electron acceptor[J]. Journal of Hazardous Materials, 2007, 147(1/2): 249-256. [21] 张树军,黄剑明,马淑勍,等. 连续流分段进水短程反硝化-厌氧氨氧化耦合反硝化脱氮特性[J]. 环境工程,2022,41(10):1-8. [22] KOENIG A, LIU L H. Kinetic model of autotrophic denitrification in sulphur packed-bed reactors[J]. Water Research, 2001, 35(8): 1969-1978. [23] 张雪洁,张向阳,张百德. 硫自养反硝化用于脱氮的研究进展[J]. 应用化工,2023,52(1):287-290,294. [24] QIAN J, ZHANG M K, WU Y G, et al. A feasibility study on biological nitrogen removal (BNR) via integrated thiosulfate-driven denitratation with anammox[J]. Chemosphere, 2018, 208: 793-799. [25] 宋壮壮,吕爽,周顺,等. NO-2-N/NH+4-N对SAD脱氮除碳性能的影响[J]. 中国给水排水,2022,38(21):20-29. [26] CHAO A. Nonparametric estimation of the number of classes in a population[J]. Scandina vian Journal of Statistics, 1984, 11(4): 265-270. [27] 马切切,袁林江,牛泽栋,等. 活性污泥微生物群落结构及与环境因素响应关系分析[J]. 环境科学,2021,42(8):3886-3893. [28] CHEN F M, LI X, GU W, et al. Selectivity control of nitrite and nitrate with the reaction of S0 and achieved nitrite accumulation in the sulfur autotrophic denitrification process[J]. Bioresource Technology, 2018, 266: 211-219. [29] LIU H, ZENG W, LI J M, et al. Effect of S2O2-3-S addition on Anammox coupling sulfur autotrophic denitrification and mechanism analysis using N and O dual isotope effects[J]. Water Research, 2022, 218: 118404. [30] STROUS M, FUERST J, KRAMER E, et al. Missing lithotroph identified as new planctomycete. Nature, 1999,400(6743):446-449. [31] KINDAICHI T, YURI S, OZAKI N, et al. Ecophysiological role and function of uncultured Chloroflexi in an Anammox reactor[J]. Water Science & Technology, 2012, 66(12): 2556-2561. [32] XU X C, ZHANG R, JIANG H B, et al. Sulphur-based autotrophic denitrification of wastewater obtained following graphite production: long-term performance, microbial communities involved, and functional gene analysis[J]. Bioresource Technology, 2020, 306: 123117. [33] KARTAL B, RATTRAY J, VAN N, et al. Candidatus "Anammoxoglobus propionicus" a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria[J]. Systematic Applied Microbiology, 2007, 30(1): 39-49.
点击查看大图
计量
- 文章访问数: 176
- HTML全文浏览量: 12
- PDF下载量: 23
- 被引次数: 0