ANALYSIS OF ORGANIC COMPOUNDS CONTENT AND BIOTOXICITY DURING TREATMENT PROCESS OF FLUE GAS DESULFURIZATION WASTEWATER IN A COAL-FIRED POWER PLANT
-
摘要: 燃煤电厂脱硫废水有机物成分复杂,极大地影响零排放系统的高效低耗运行,并存在一定的生物毒性风险。采用现场测试和模拟实验的方法,对某燃煤电厂脱硫废水处理过程中的有机物组分及生物毒性进行解析。结果表明:"两级澄清法"和"高效絮凝剂法"虽不能有效去除脱硫废水的有机物,但能降低废水中的腐植酸类物质。纳滤浓水的回流作用使调节池出水色氨酸和酪氨酸类蛋白质占比降低至30%,但腐植酸类物质占比大幅升高至60%。脱硫废水中污染物的分子量主要集中在2084,612 Da附近,纳滤浓水污染物的分子量相比预处理出水略小,污染物可能通过吸附、堵塞孔隙等导致膜污染。"两级澄清法"和"高效絮凝剂法"能大幅削减调节池出水的生物毒性,发光细菌发光抑制率分别由46.23%下降至12.45%和2.57%;而纳滤浓水富集了大量腐植酸等生物毒性物质,发光抑制率升高至49.05%。脱硫废水有机物较低的分子量导致较高的纳滤膜污染,而腐植酸等的富集增加了纳滤浓水的生物毒性。Abstract: The complex organic composition of desulfurization wastewater in coal-fired power plants greatly affected the high efficiency and low-consumption operation of zero-emission systems, and there was a certain risk of biological toxicity. The organic components and biological toxicity in the desulfurization wastewater treatment process of a coal-fired power plant were analyzed by field test and simulation experiments in this study. The results showed that the two-stage clarification method and the high-efficiency flocculant method could not effectively remove the organic matter in the desulfurization wastewater, but could reduce the humic acid substances in the wastewater. The reflux of nanofiltration concentrate reduced the proportion of tryptophan and tyrosine protein in the effluent of the regulating tank to 30%, but greatly increased the proportion of humic acid substances to 60%. The molecular weights of the pollutants in the desulfurization wastewater were mainly around 2084 Da and 612 Da, and the molecular weight of the pollutants in the nanofiltration concentrate was slightly smaller than that of the pretreated effluent, which may cause membrane fouling by adsorption and plugging pores. The two-stage clarification method and high-efficiency flocculant method could all remarkably reduce the biological toxicity of the effluent of the regulating tank, and the luminescence inhibition rate of luminescent bacteria decreased from 46.23% to 12.45% and 2.57%, respectively. The nanofiltration concentrate enriched a large number of biological toxic substances such as humic acid, and the luminescence inhibition rate increased to 49.05%. The lower molecular weight of the organic matter in the desulfurization wastewater resulted in higher risk of nanofiltration membrane fouling, and the enrichment of humic acid increased the biological toxicity of nanofiltration concentrate.
-
Key words:
- desulfurization wastewater /
- organic compounds /
- molecular weight /
- membrane fouling /
- biotoxicity
-
[1] ZHENG L B,JIAO Y Y,ZHONG H, et al. Insight into the magnetic lime coagulation-membrane distillation process for desulfurization wastewater treatment: from pollutant removal feature to membrane fouling[J]. Journal of Hazardous Materials, 2020, 391:122202. [2] 王锐,李永立,张洪江,等.海藻酸钠强化脱硫废水石灰软化SO2-4去除的研究[J].环境工程,2023,41(3):26-33. [3] 刘召平.某电厂脱硫废水处理系统的设计与运行[J].中国给水排水, 2011, 27(2):65-67. [4] 李亚娟,卢剑,余耀宏,等.某电厂废水零排放系统污堵分析[J].热力发电,2023, 52(1):177-182. [5] 国家能源局.燃煤电厂石灰石—石膏湿法脱硫废水水质控制指标:DL/T 997—2020[S].北京:中国电力出版社,2020. [6] 吴琼,明强,卢卫,等.基于脱硫废水零排放的膜法深度处理工艺研究[J].水处理技术,2022,48(8):102-106. [7] 孙振宇,沈明忠.燃煤电厂脱硫废水零排放工程案例研究[J].工业水处理,2018, 38(10):102-105. [8] 彭足仁,高然.燃煤电厂脱硫废水零排放处理工程实例研究[J].中国设备工程,2021, 7(13):22-23. [9] 卢卫,明强,吴琼,等.纳滤膜处理脱硫废水过程膜污染特性分析[J].膜科学与技术,2022, 42(1):138-144. [10] 张婷婷,李仁威,卢可馨,等.两种典型RO浓缩液中污染物的去除效果及机理研究[J].水处理技术, 2022, 48(11):121-130. [11] 伊学农,王玉琳,闫志华,等.反渗透特种膜处理湿法脱硫废水中试研究[J].中国给水排水, 2016, 32(1):67-70. [12] 国家环保局保护总局,水和废水监测分析方法编委会.水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002. [13] 国家市场监督管理总局,中国国家标准化管理委员会.锅炉用水和冷却水分析方法 硬度的测定:GB/T 6909—2018[S].北京:中国标准出版社, 2018. [14] WEN G, WANG T, LI K, et al. Aerobic denitrification performance of strain Acinetobacter johnsonii WGX-9 using different natural organic matter as carbon source: effect of molecular weight[J]. Water Research, 2019,164:114956. [15] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37:5701-5710. [16] 马晓妍,陈文凤,成芳德,等.两种分子量分级下 DOM 的组分特征及其生物毒性[J].中国环境科学, 2021, 41(12):5885-5895. [17] 张攀.新型脱硫废水的高效絮凝处理工艺[J].化学工程与装备, 2020(9):255-258. [18] LV M, LIU T T, CHEN F, et al. Interactions between magnetic particles and polyaluminum chloride on the coagulation behavior in humic acid-kaolin synthetic water treatment[J]. Environmental Research, 2021, 197:111093. [19] 张华,全桂军,黄健,等.废水DOM荧光强度与COD总氮的相关分析[J].环境科学与技术, 2017, 40(10):157-162. [20] SUKSAROJ C, RATTANAMANEE P, MUSIKAVONG C, et al. The Determination of tryptophan and humic and fulvic acid-like substances reduction in raw water from U-TAPAO Basin Thailand with alum coagulation[J]. Water Practice & Technology, 2009, 4(2):1-9. [21] 郭永晖,李永国,王坚,等.不同截留分子量超微滤膜处理地表水中膜污染的对比研究[J].膜科学与技术, 2022, 42(5):139-153. [22] YANG X J, LIVINGSTON A G, FREITAS SANTOS L. Experimental observations of nanofiltration with organic solvents[J]. Journal of Membrane Science, 2001, 190:45-55. [23] SONG Q Y, GRAHAM N, TANG Y N, et al. The role of medium molecular weight organics on reducing disinfection by-products and fouling prevention in nanofiltration[J]. Water Research, 2022, 215:118263. [24] TANG S J, WANG Z W, WU Z C, et al. Role of dissolved organic matters (DOM) in membrane fouling of membrane bioreactors for municipal wastewater treatment[J]. Journal of Hazardous Materials, 2010,178:377-384. [25] 张松,李菲菲,史晨,等.生活污水的臭氧深度处理及其急性毒性[J].环境工程学报, 2017, 11(6):3468-3474. [26] 董晓丹.葡萄糖碳源下焦化纳滤浓水脱氮性能及微生物机理分析[J].水处理技术, 2022, 48(3):79-87. [27] 聂春梅,牛春革,方新湘,等.高级氧化法降解纳滤浓水COD的技术研究[J].炼油与化工, 2020, 31(6):15-19.
点击查看大图
计量
- 文章访问数: 201
- HTML全文浏览量: 26
- PDF下载量: 22
- 被引次数: 0